mindspore.common.initializer
Initializer for cell parameters.
- class mindspore.common.initializer.Constant(value)[source]
Initialize a constant.
- Parameters
value (Union[int, numpy.ndarray]) – The value to initialize.
- Returns
Array, an array after being assigned.
- class mindspore.common.initializer.HeNormal(negative_slope=0, mode=fan_in, nonlinearity=leaky_relu)[source]
Initialize the array with He kaiming Normal algorithm, and from a normal distribution collect samples within N(0, sigma).
- Parameters
negative_slope (int, float, bool) – The negativa slope of the rectifier used after this layer (only used when nonlinearity is ‘leaky_relu’). Default: 0.
mode (str) – Either ‘fan_in’ or ‘fan_out’. Choosing ‘fan_in’ preserves the magnitude of the variance of the weights in the forward pass. Choosing ‘fan_out’ preserves the magnitudes in the backwards pass. Default: fan_in.
nonlinearity (str) – The non-linear function, recommended to use only with ‘relu’ or ‘leaky_relu’. Default: leaky_relu.
- Returns
Array, assigned array.
- class mindspore.common.initializer.HeUniform(negative_slope=0, mode=fan_in, nonlinearity=leaky_relu)[source]
Initialize the array with He kaiming uniform algorithm, and from a uniform distribution collect samples within U[-boundary, boundary] The boundary is defined as:
\[boundary = \sqrt{\frac{6}{(1 + a^2) \times \text{fan_in}}}\]- Parameters
negative_slope (int, float, bool) – The negativa slope of the rectifier used after this layer (only used when nonlinearity is ‘leaky_relu’). Default: 0.
mode (str) – Either ‘fan_in’ or ‘fan_out’. Choosing ‘fan_in’ preserves the magnitude of the variance of the weights in the forward pass. Choosing ‘fan_out’ preserves the magnitudes in the backwards pass. Default: fan_in.
nonlinearity (str) – The non-linear function, recommended to use only with ‘relu’ or ‘leaky_relu’. Default: leaky_relu.
- Returns
Array, assigned array.
- class mindspore.common.initializer.Initializer(**kwargs)[source]
The base class of the initializer. Initialization of tensor basic attributes and model weight values.
- Parameters
kwargs (dict) – Keyword arguments for Initializer.
- Returns
Array, an array after being initialized.
- class mindspore.common.initializer.Normal(sigma=0.01)[source]
Initialize a normal array, and obtain values N(0, sigma) from the uniform distribution to fill the input tensor.
- Parameters
sigma (float) – The sigma of the array. Default: 0.01.
- Returns
Array, normal array.
- class mindspore.common.initializer.One(**kwargs)[source]
Initialize the array to one.
- Parameters
arr (Array) – The array to be assigned.
- Returns
Array, assigned array.
- class mindspore.common.initializer.TruncatedNormal(sigma=0.01)[source]
Initialize a truncated normal distribution which is a bounded normal distribution within N(low, high).
- Parameters
sigma (float) – The sigma of the array. Default: 0.01.
- Returns
Array, truncated normal array.
- class mindspore.common.initializer.Uniform(scale=0.07)[source]
Initialize a uniform array, and obtain values U(-scale, scale) from the uniform distribution to fill the input tensor.
- Parameters
scale (float) – The scale of the array. Default: 0.07.
- Returns
Array, uniform array.
- class mindspore.common.initializer.XavierUniform(gain=1)[source]
Initialize the array with xavier uniform algorithm, and from a uniform distribution collect samples within U[-boundary, boundary] The boundary is defined as:
\[boundary = gain * \sqrt{\frac{6}{n_{in} + n_{out}}}\]where \(n_{in}\) is the number of input units in the weight tensor.
where \(n_{out}\) is the number of output units in the weight tensor.
- Parameters
gain (float) – An optional scaling factor. Default: 1.
- Returns
Array, assigned array.
- class mindspore.common.initializer.Zero(**kwargs)[source]
Initialize the array to zero.
- Parameters
arr (Array) – The array to be assigned.
- Returns
Array, an array after being assigned.
- mindspore.common.initializer.initializer(init, shape=None, dtype=mindspore.float32)[source]
Create and initialize a tensor.
- Parameters
init (Union[Tensor, str, Initializer, numbers.Number]) –
Initialize value.
str: The init should be the alias of the class inheriting from Initializer and the corresponding class will be called.
Initializer: The init should be the class inheriting from Initializer to initialize tensor.
numbers.Number: The Constant will be called to initialize tensor.
shape (Union[tuple, list, int]) – A list of integers, a tuple of integers or an integer as the shape of output. Default: None.
dtype (
mindspore.dtype
) – The type of data in initialized tensor. Default: mindspore.float32.
- Returns
Union[Tensor], return is Tensor object.
Examples
>>> import mindspore >>> from mindspore.common.initializer import initializer, One >>> tensor = initializer('ones', [1, 2, 3], mindspore.float32) >>> tensor = initializer(One(), [1, 2, 3], mindspore.float32) >>> tensor = initializer(0, [1, 2, 3], mindspore.float32)