# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Useful functions"""
import numpy as np
def _check_num_array(vec, name):
if not isinstance(vec, (np.ndarray, list)):
raise TypeError(
"{} requires a numpy.ndarray or a list of number, but get {}.".
format(name, type(vec)))
[docs]def mod(vec_in, axis=0):
"""
Calculate the mod of input vectors.
Args:
vec_in (Union[list[number], numpy.ndarray]): The vector you want to calculate mod.
axis (int): Along which axis you want to calculate mod.
Returns:
numpy.ndarray, The mod of input vector.
Examples:
>>> vec_in = np.array([[1, 2, 3], [4, 5, 6]])
>>> mod(vec_in)
array([[4.12310563, 5.38516481, 6.70820393]])
>>> mod(vec_in, 1)
array([[3.74165739],
[8.77496439]])
"""
_check_num_array(vec_in, 'vec_in')
vec_in = np.array(vec_in)
return np.sqrt(np.sum(np.conj(vec_in) * vec_in, axis=axis, keepdims=True))
[docs]def normalize(vec_in, axis=0):
"""
Normalize the input vectors based on specified axis.
Args:
vec_in (Union[list[number], numpy.ndarray]): Vector you want to
normalize.
axis (int): Along which axis you want to normalize your vector.
Returns:
numpy.ndarray, Vector after normalization.
Examples:
>>> vec_in = np.array([[1, 2, 3], [4, 5, 6]])
>>> normalize(vec_in)
array([[0.24253563, 0.37139068, 0.4472136 ],
[0.9701425 , 0.92847669, 0.89442719]])
>>> normalize(vec_in, 1)
array([[0.26726124, 0.53452248, 0.80178373],
[0.45584231, 0.56980288, 0.68376346]])
"""
_check_num_array(vec_in, 'vec_in')
vec_in = np.array(vec_in)
return vec_in / mod(vec_in, axis=axis)
[docs]def random_state(shapes, norm_axis=0, comp=True, seed=None):
"""
Generate some random quantum state.
Args:
shapes (tuple): shapes = (m, n) means m quantum states with each state
formed by log2(n) qubits.
norm_axis (int): which axis you want to apply normalization. Default,
0
comp (bool): if `True`, each amplitude of the quantum state will be a
complex number.
seed (int): the random seed.
Returns:
numpy.ndarray, A normalized random quantum state.
Examples:
>>> random_state((2, 2), seed=42)
array([[0.44644744+0.18597239j, 0.66614846+0.10930256j],
[0.87252821+0.06923499j, 0.41946926+0.60691409j]])
"""
if not isinstance(shapes, (int, tuple)):
raise TypeError(
"shape requires a int of a tuple of int, but get {}!".format(
type(shapes)))
if not isinstance(comp, bool):
raise TypeError("comp requires a bool, but get {}!".format(comp))
np.random.seed(seed)
out = np.random.uniform(size=shapes) + 0j
if comp:
out += np.random.uniform(size=shapes) * 1j
if norm_axis is False:
return out
return normalize(out, axis=norm_axis)