# Copyright 2021-2023 @ Shenzhen Bay Laboratory &
# Peking University &
# Huawei Technologies Co., Ltd
#
# This code is a part of MindSPONGE:
# MindSpore Simulation Package tOwards Next Generation molecular modelling.
#
# MindSPONGE is open-source software based on the AI-framework:
# MindSpore (https://www.mindspore.cn/)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Atoms
"""
from typing import Union, List
from numpy import ndarray
import mindspore as ms
import mindspore.numpy as msnp
from mindspore.ops import functional as F
from mindspore.common import Tensor
from ..colvar import Colvar
from ...function import functions as func
from ...function import get_ms_array, get_integer, Units
__all__ = [
'AtomsBase',
'Atoms',
'BatchedAtoms',
]
[文档]class AtomsBase(Colvar):
r"""
Base class for specific atoms group, used as the "atoms group module" in MindSPONGE.
The `AtomsBase` Cell is a special subclass of `Colvar`. It has the shape `(a_1, a_2, ... , a_n, D)`,
where `D` is the dimension of the atomic coordinates (usually 3). As with the Colvar Cell, when it takes
as input coordinates of shape `(B, A, D)`, it returns the shape of the Tensor with an extra dimension `B`,
i.e. `(B, a_1, a_2, ... , a_n, D)`. B means Batchsize, i.e. number of walkers in simulation.
{a_i} means Dimensions of the Atoms Cell.
Args:
keep_in_box (bool): Whether to keep the coordinate in PBC box.
Default: ``False``.
dimension (int): Spatial dimension of the simulation system. Default: 3
name (str): Name of the Colvar. Default: 'atoms'
Supported Platforms:
``Ascend`` ``GPU``
"""
def __init__(self,
keep_in_box: bool = False,
dimension: int = 3,
name: str = 'atoms'
):
super().__init__(
shape=(1, dimension),
periodic=False,
name=name,
)
self.dimension = get_integer(dimension)
self.keep_in_box = keep_in_box
@property
def ndim(self) -> int:
"""rank (number of dimensions) of the atoms"""
return self._ndim
@property
def shape(self) -> tuple:
"""shape of the atoms"""
return self._shape
[文档] def set_dimension(self, dimension: int = 3):
"""set the spatial dimension of the simulation system"""
self.dimension = get_integer(dimension)
self._shape = self.shape[:-1] + (self.dimension,)
return self
[文档] def get_unit(self, units: Units = None) -> str:
"""return unit of the collective variables"""
return units.length_unit_name
[文档] def reshape(self, input_shape: tuple):
"""rearranges the shape of atoms"""
if input_shape != self._shape:
self.do_reshape = True
self._shape = input_shape
self._ndim = len(self._shape)
self._periodic = msnp.full(self._shape, False)
return self
[文档] def coordinate_in_pbc(self, coordinate: Tensor, pbc_box: Tensor = None) -> Tensor:
"""displace the coordinate in PBC box."""
if pbc_box is None:
return coordinate
return func.coordinate_in_pbc(coordinate, pbc_box)
def construct(self, coordinate: Tensor, pbc_box: Tensor = None):
r"""get position coordinate(s) of specific atom(s)
Args:
coordinate (Tensor): Tensor of shape (B, A, D). Data type is float.
Position coordinate of atoms in system
pbc_box (Tensor): Tensor of shape (B, D). Data type is float.
Tensor of PBC box. Default: ``None``.
Returns:
position (Tensor): Tensor of shape (B, ..., D). Data type is float.
"""
# (B, a_1, a_2, ..., a_n, D)
raise NotImplementedError
def _set_shape(self, shape: tuple):
"""set shape of Atoms"""
super()._set_shape(shape)
self.dimension = self._shape[-1]
return self
[文档]class Atoms(AtomsBase):
r"""
Specific atoms group initialized using an array of atomic indices. It is a subclass of `AtomsBase`.
When initializing, the Atoms Cell accepts as input an array of atomic indices, which can either be common
to all walkers or have a separate index for each walker.
To set a common atomic index, set `batched` to `False`, where the shape of the `index` is the same as
the shape of the `Atoms` Cell, which is `(a_1, a_2, ... , a_n)`, while the shape of the returned Tensor is
`(B, a_1, a_2, ... , a_n, D)`. `B` means Batchsize, i.e. number of walkers in simulation.
`{a_i}` means Dimensions of the Atoms Cell. `D` means Dimension of the simulation system. Usually is 3.
To set a separate atomic index for each walker, set `Batched` to `True`. In this case, the shape of `index`
should be `(B, a_1, a_2, ... , a_n)`, while the shape of the `Atoms` Cell would be `(a_1, a_2, ... , a_n)`.
The batch size `B` of the atomic indices should be the same as the batch size of the simulation system.
The shape of the returned Tensor of the `Atoms` Cell is `(B, a_1, a_2, ... , a_n, D)`.
Args:
index (Union[Tensor, ndarray, List[int]]):
Array of the indices of specific atoms.
The shape of tensor is (a_1, a_2, ..., a_n) or (B, a_1, a_2, ..., a_n), and the
data type is int.
batched (bool): Whether the first dimension of index is the batch size.
Default: ``False``.
keep_in_box (bool): Whether to displace the coordinate in PBC box.
Default: ``False``.
dimension (int): Spatial dimension of the simulation system. Default: 3
name (str): Name of the Colvar. Default: 'atoms'
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> import mindspore as ms
>>> import numpy as np
>>> from mindspore import Tensor
>>> from sponge.colvar import Atoms
>>> crd = Tensor(np.random.random((4, 3)), ms.float32)
>>> crd
Tensor(shape=[4, 3], dtype=Float32, value=
[[ 2.47492954e-01, 9.78153408e-01, 1.44034222e-01],
[ 2.36211464e-01, 3.35842371e-01, 8.39536846e-01],
[ 8.82235169e-01, 5.98322928e-01, 6.68052316e-01],
[ 7.17712820e-01, 4.72498119e-01, 1.69098437e-01]])
>>> atom_1 = Atoms(0)
>>> atom_1(crd)
Tensor(shape=[1, 3], dtype=Float32, value=
[[ 2.47492954e-01, 9.78153408e-01, 1.44034222e-01]])
"""
def __init__(self,
index: Union[Tensor, ndarray, List[int]],
batched: bool = False,
keep_in_box: bool = False,
dimension: int = 3,
name: str = 'atoms',
):
super().__init__(
keep_in_box=keep_in_box,
dimension=dimension,
name=name,
)
self.index = get_ms_array(index, ms.int32)
if self.index.ndim == 0:
self.index = self.index.reshape((1,))
if batched:
# shape of self.index: (B, a_1, a_2, ..., a_n)
if self.index.ndim == 1:
raise ValueError('The rank of index must be larger than 1 '
'when using batched!')
else:
# (1, a_1, a_2, ..., a_n) <- (a_1, a_2, ..., a_n)
self.index = F.expand_dims(self.index, 0)
# (a_1, a_2, ..., a_n, -1)
self._set_shape(self.index.shape[1:] + (self.dimension,))
self.keep_in_box = keep_in_box
[文档] def reshape(self, input_shape: tuple):
"""rearranges the shape of atoms"""
shape = self._shape[0] + input_shape[:-1]
self.index = F.reshape(self.index, shape)
self._shape = self.index.shape[1:] + (self.dimension,)
self._ndim = self.index.ndim
self._periodic = msnp.full(self._shape, False)
return self
def construct(self, coordinate: Tensor, pbc_box: Tensor = None):
r"""get position coordinate(s) of specific atom(s)
Args:
coordinate (Tensor): Tensor of shape (B, A, D). Data type is float.
Position coordinate of atoms in system. `A` means Number of atoms in system.
pbc_box (Tensor): Tensor of shape (B, D). Data type is float.
Tensor of PBC box. Default: ``None``.
Returns:
position (Tensor): Tensor of shape (B, a_1, a_2, ..., a_{n}, D). Data type is float.
"""
# (B, a_1, a_2, ..., a_{n}, D) <- (B, A, D)
atoms = func.gather_vector(coordinate, self.index)
if self.keep_in_box:
atoms = self.coordinate_in_pbc(atoms, pbc_box)
return atoms
[文档]class BatchedAtoms(Atoms):
r"""
A batched version of Atoms Cell. It is a subclass of `Atoms`.
the shape of `index` should be `(B, a_1, a_2, ... , a_n)`, while the shape of the `Atoms` Cell would be
`(a_1, a_2, ... , a_n)`. The batch size `B` of the atomic indices should be the same as the batch size
of the simulation system. The shape of the returned Tensor of the `Atoms` Cell is `(B, a_1, a_2, ... , a_n, D)`.
`{a_i}` means Dimensions of the Atoms Cell. `D` means Dimension of the simulation system. Usually is 3.
Args:
index (Union[Tensor, ndarray, List[int]]):
Array of the indices of specific atoms.
The shape of tensor is (B, a_1, a_2, ..., a_{n}), and the data type is int
keep_in_box (bool): Whether to displace the coordinate in PBC box.
Default: ``False``.
dimension (int): Spatial dimension of the simulation system. Default: 3
name (str): Name of the Colvar. Default: 'atoms'
Supported Platforms:
``Ascend`` ``GPU``
"""
def __init__(self,
index: Union[Tensor, ndarray, List[int]],
keep_in_box: bool = False,
dimension: int = 3,
name: str = 'atoms',
):
super().__init__(
index=index,
batched=True,
keep_in_box=keep_in_box,
dimension=dimension,
name=name,
)