mindquantum.core.gates.RX
- class mindquantum.core.gates.RX(pr)[源代码]
围绕x轴的旋转门。
\[\begin{split}{\rm RX}=\begin{pmatrix}\cos(\theta/2)&-i\sin(\theta/2)\\ -i\sin(\theta/2)&\cos(\theta/2)\end{pmatrix}\end{split}\]该旋转门可以用三种不同的方式初始化。
如果用单个数字初始化它,那么它将是一个具有一定旋转角度的非参数化门。
如果使用单个str初始化它,那么它将是只有一个参数的参数化门,默认系数为1。
如果使用dict初始化它,例如 {'a':1,'b':2} ,则此门可以包含多个具有特定系数的参数。在这种情况下,它可以表示为:
\[RX(a+2b)\]- 参数:
pr (Union[int, float, str, dict, ParameterResolver]) - 参数化门的参数,详细解释请参见上文。
样例:
>>> from mindquantum.core.gates import RX >>> import numpy as np >>> rx1 = RX(0.5) >>> np.round(rx1.matrix(), 2) array([[0.97+0.j , 0. -0.25j], [0. -0.25j, 0.97+0.j ]]) >>> rx2 = RX('a') >>> np.round(rx2.matrix({'a':0.1}), 3) array([[0.999+0.j , 0. -0.05j], [0. -0.05j, 0.999+0.j ]]) >>> rx3 = RX({'a' : 0.2, 'b': 0.5}).on(0, 2) >>> print(rx3) RX(0.2*a + 0.5*b|0 <-: 2) >>> np.round(rx3.matrix({'a' : 1, 'b' : 2}), 2) array([[0.83+0.j , 0. -0.56j], [0. -0.56j, 0.83+0.j ]]) >>> np.round(rx3.diff_matrix({'a' : 1, 'b' : 2}, about_what = 'a'), 2) array([[-0.06+0.j , 0. -0.08j], [ 0. -0.08j, -0.06+0.j ]]) >>> rx3.coeff {'a': 0.2, 'b': 0.5}