Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

PR

Just a small problem.

I can fix it online!

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindquantum.core.operators.PolynomialTensor

View Source On Gitee
class mindquantum.core.operators.PolynomialTensor(n_body_tensors=None)[source]

Class to store the coefficient of the fermionic ladder operators in a tensor form.

For instance, in a molecular Hamiltonian (degree 4 polynomial) which conserves particle number, there are only three kinds of terms, namely constant term, single excitation apaq and double excitation terms apaqaras, and their corresponding coefficients can be stored in an scalar, nqubits×nqubits matrix and nqubits×nqubits×nqubits×nqubits matrix. Note that each tensor must have an even number of dimensions due to the parity conservation. Much of the functionality of this class is similar to that of FermionOperator.

Parameters

n_body_tensors (dict) – A dictionary storing the tensors describing n-body interactions. The keys are tuples that indicate the type of tensor. For instance, n_body_tensors[()] would return a constant, while a n_body_tensors[(1, 0)] would be an nqubits×nqubits numpy array, and n_body_tensors[(1,1,0,0)] would return a nqubits×nqubitsnqubits×nqubits numpy array and those constant and array represent the coefficients of terms of the form identity, apaq, apaqaras, respectively. Default: None.

Note

Here '1' represents a, while '0' represent a.

Examples

>>> import numpy as np
>>> from mindquantum.core.operators import PolynomialTensor
>>> constant = 1
>>> one_body_term = np.array([[1,0],[0,1]])
>>> two_body_term = two_body_term = np.array([[[[1,0],[0,1]],[[1,0],[0,1]]],[[[1,0],[0,1]],[[1,0],[0,1]]]])
>>> n_body_tensors = {(): 1, (1,0): one_body_term,(1,1,0,0):two_body_term}
>>> poly_op = PolynomialTensor(n_body_tensors)
>>> poly_op
() 1
((0, 1), (0, 0)) 1
((1, 1), (1, 0)) 1
((0, 1), (0, 1), (0, 0), (0, 0)) 1
((0, 1), (0, 1), (1, 0), (1, 0)) 1
((0, 1), (1, 1), (0, 0), (0, 0)) 1
((0, 1), (1, 1), (1, 0), (1, 0)) 1
((1, 1), (0, 1), (0, 0), (0, 0)) 1
((1, 1), (0, 1), (1, 0), (1, 0)) 1
((1, 1), (1, 1), (0, 0), (0, 0)) 1
((1, 1), (1, 1), (1, 0), (1, 0)) 1
>>> # get the constant
>>> poly_op.constant
1
>>> # set the constant
>>> poly_op.constant = 2
>>> poly_op.constant
2
>>> poly_op.n_qubits
2
>>> poly_op.one_body_tensor
array([[1, 0],
       [0, 1]])
>>> poly_op.two_body_tensor
array([[[[1, 0],
         [0, 1]],
        [[1, 0],
         [0, 1]]],
       [[[1, 0],
         [0, 1]],
         [[1, 0],
          [0, 1]]]])
property constant

Get the value of the identity term.

property one_body_tensor

Get the one-body term.

property two_body_tensor

Get the two-body term.