mindquantum.algorithm.library.qudit_symmetric_decoding
- mindquantum.algorithm.library.qudit_symmetric_decoding(qubit: np.ndarray, n_qubits: int = 1)[source]
Qudit symmetric decoding, decodes a qubit symmetric state or matrix into a qudit state or matrix.
The input qubit state/matrix must preserve the symmetry required by the qudit-qubit mapping. For example, in a qutrit(d=3) to two-qubit mapping:
\[\begin{split}\begin{align} \ket{00\cdots00}&\to\ket{0} \\[.5ex] \frac{\ket{0\cdots01}+\ket{0\cdots010}+\ket{10\cdots0}}{\sqrt{d-1}}&\to\ket{1} \\ \frac{\ket{0\cdots011}+\ket{0\cdots0101}+\ket{110\cdots0}}{\sqrt{d-1}}&\to\ket{2} \\ \vdots&\qquad\vdots \\[.5ex] \ket{11\cdots11}&\to\ket{d-1} \end{align}\end{split}\]The symmetry requires that states in the same symmetric subspace must have equal amplitudes. For example, states |01⟩ and |10⟩ belong to the same symmetric subspace and must have equal amplitudes.
- Parameters
qubit (np.ndarray) – the qubit symmetric state or matrix that needs to be decoded, where the qubit state or matrix must preserve symmetry.
n_qubits (int) – the number of qubits in the qubit symmetric state or matrix. Default:
1
.
- Returns
np.ndarray, the qudit state or matrix obtained after the qudit symmetric decoding.
- Raises
ValueError – If the input qubit state/matrix does not preserve the required symmetry.
Examples
>>> import numpy as np >>> from mindquantum.algorithm.library.qudit_mapping import qudit_symmetric_decoding >>> # A symmetric qubit state where amplitudes in |01⟩ and |10⟩ are equal >>> qubit = np.array([1., 2., 2., 3.]) >>> qubit /= np.linalg.norm(qubit) >>> print(qubit) [0.23570226 0.47140452 0.47140452 0.70710678] >>> print(qudit_symmetric_decoding(qubit)) [0.23570226+0.j 0.66666667+0.j 0.70710678+0.j]