mindflow.cell.LinearBlock
- class mindflow.cell.LinearBlock(in_channels, out_channels, weight_init='normal', bias_init='zeros', has_bias=True, activation=None)[source]
The LinearBlock. Applies a linear transformation to the incoming data.
- Parameters
in_channels (int) – The number of channels in the input space.
out_channels (int) – The number of channels in the output space.
weight_init (Union[Tensor, str, Initializer, numbers.Number]) – The trainable weight_init parameter. The dtype is same as input input . For the values of str, refer to the function mindspore.common.initializer. Default:
"normal"
.bias_init (Union[Tensor, str, Initializer, numbers.Number]) – The trainable bias_init parameter. The dtype is same as input input . The values of str refer to the function mindspore.common.initializer. Default:
"zeros"
.has_bias (bool) – Specifies whether the layer uses a bias vector. Default:
True
.activation (Union[str, Cell, Primitive, None]) – activate function applied to the output of the fully connected layer. Default:
None
.
- Inputs:
input (Tensor) - Tensor of shape \((*, in\_channels)\).
- Outputs:
Tensor of shape \((*, out\_channels)\).
- Supported Platforms:
Ascend
GPU
Examples
>>> import numpy as np >>> from mindflow.cell import LinearBlock >>> from mindspore import Tensor >>> input = Tensor(np.array([[180, 234, 154], [244, 48, 247]], np.float32)) >>> net = LinearBlock(3, 4) >>> output = net(input) >>> print(output.shape) (2, 4)