mindelec.loss.NetWithEval
- class mindelec.loss.NetWithEval(net_without_loss, constraints, loss='l2', dataset_input_map=None)[source]
Encapsulation class of network with loss of eval.
- Parameters
net_without_loss (Cell) – The training network without loss definition.
constraints (Constraints) – The constraints function of pde problem.
loss (Union[str, dict, Cell]) – The name of loss function, e.g. “l1”, “l2” and “mae”. Default: “l2”.
dataset_input_map (dict) – The input map of the dataset Default: None.
- Inputs:
inputs (Tensor) - The input is variable-length argument which contains network inputs and label.
- Outputs:
Tuple, containing a scalar loss Tensor, a network output Tensor of shape \((N, \ldots)\) and a label Tensor of shape \((N, \ldots)\).
- Supported Platforms:
Ascend
Examples
>>> import numpy as np >>> from mindelec.loss import Constraints, NetWithEval >>> from mindspore import Tensor, nn >>> class Net(nn.Cell): ... def __init__(self, input_dim, output_dim): ... super(Net, self).__init__() ... self.fc1 = nn.Dense(input_dim, 64) ... self.fc2 = nn.Dense(64, output_dim) ... ... def construct(self, *input): ... x = input[0] ... out = self.fc1(x) ... out = self.fc2(out) ... return out >>> net = Net(3, 3) >>> # For details about how to build the Constraints, please refer to the tutorial >>> # document on the official website. >>> constraints = Constraints(dataset, pde_dict) >>> loss_network = NetWithEval(net, constraints) >>> input = Tensor(np.ones([1000, 3]).astype(np.float32) * 0.01) >>> label = Tensor(np.ones([1000, 3]).astype(np.float32)) >>> output_data = loss_network(input, label)