比较与tf.compat.v1.train.ProximalAdagradOptimizer的功能差异
tf.compat.v1.train.ProximalAdagradOptimizer
tf.compat.v1.train.ProximalAdagradOptimizer(
learning_rate,
initial_accumulator_value=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
use_locking=False,
name='ProximalAdagrad'
) -> Tensor
mindspore.nn.ProximalAdagrad
class mindspore.nn.ProximalAdagrad(
params,
accum=0.1,
learning_rate=0.001,
l1=0.0,
l2=0.0,
use_locking=False,
loss_scale=1.0,
weight_decay=0.0
)(grads) -> Tensor
更多内容详见mindspore.nn.ProximalAdagrad。
差异对比
TensorFlow:实现ProximalAdagrad算法的优化器功能。
MindSpore:MindSpore此API实现功能与TensorFlow基本一致。
分类 |
子类 |
TensorFlow |
MindSpore |
差异 |
---|---|---|---|---|
参数 |
参数1 |
learning_rate |
learning_rate |
功能一致,TensorFlow无默认值 |
参数2 |
initial_accumulator_value |
accum |
功能一致,参数名不同 |
|
参数3 |
l1_regularization_strength |
l1 |
功能一致,参数名不同 |
|
参数4 |
l2_regularization_strength |
l2 |
功能一致,参数名不同 |
|
参数5 |
use_locking |
use_locking |
- |
|
参数6 |
name |
- |
不涉及 |
|
参数7 |
- |
params |
由Parameter类组成的列表或由字典组成的列表,TensorFlow中无此参数 |
|
参数8 |
- |
loss_scale |
梯度缩放系数,默认值:1.0,TensorFlow中无此参数 |
|
参数9 |
- |
weight_decay |
权重衰减(L2 penalty),默认值:0.0,TensorFlow中无此参数 |
|
参数10 |
- |
grads |
优化器中 |
代码示例
两API实现功能一致。
# TensorFlow
import tensorflow as tf
import numpy as np
tf.compat.v1.disable_v2_behavior()
tf.compat.v1.disable_eager_execution()
param_np = np.ones(7).astype(np.float32)
indices = np.array([1, 2, 3, 4, 5, 6]).astype(np.int32)
label = np.zeros((2, 3)).astype(np.float32)
label_shape = (2, 3)
axis = 0
epoch = 3
param_tf = tf.Variable(param_np)
indices_tf = tf.Variable(indices)
label = tf.Variable(label)
net = tf.raw_ops.GatherV2(params=param_tf, indices=indices_tf, axis=axis, batch_dims=0, name=None)
net = tf.reshape(net, label_shape)
criterion = tf.compat.v1.losses.softmax_cross_entropy(onehot_labels=label, logits=net,
reduction=tf.compat.v1.losses.Reduction.MEAN)
opt = tf.compat.v1.train.ProximalAdagradOptimizer(learning_rate=0.001).minimize(criterion)
init = tf.compat.v1.global_variables_initializer()
with tf.compat.v1.Session() as ss:
ss.run(init)
for i in range(epoch):
loss = criterion.eval()
ss.run(opt)
output = net.eval()
net = ss.run(net)
out_tf = output.astype(np.float32)
print(out_tf)
# [[0.9987219 0.9987219 0.9987219]
# [0.9987219 0.9987219 0.9987219]]
# MindSpore
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as op
from mindspore import Parameter
from mindspore.nn import SoftmaxCrossEntropyWithLogits
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn import Cell
class NetWithGatherV2(Cell):
def __init__(self, param_np, label, axis=0):
super(NetWithGatherV2, self).__init__()
self.param = Parameter(Tensor(param_np), name="w1")
self.gatherv2 = op.GatherV2()
self.reshape = op.Reshape()
self.axis = axis
self.label = label
def construct(self, indices):
x = self.gatherv2(self.param, indices, self.axis)
return self.reshape(x, self.label)
param_np = np.ones(7).astype(np.float32)
indices = np.array([1, 2, 3, 4, 5, 6]).astype(np.int32)
label = np.zeros((2, 3)).astype(np.float32)
label_shape = (2, 3)
epoch = 3
inputs = Tensor(indices)
label = Tensor(label)
net = NetWithGatherV2(param_np, label_shape, axis=0)
criterion = SoftmaxCrossEntropyWithLogits(reduction='mean')
optimizer = nn.ProximalAdagrad(params=net.trainable_params())
net_with_criterion = WithLossCell(net, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer)
train_network.set_train()
for i in range(epoch):
train_network(inputs, label)
out_ms = net(inputs).asnumpy()
print(out_ms)
# [[0.9987219 0.9987219 0.9987219]
# [0.9987219 0.9987219 0.9987219]]