比较与tf.keras.layers.PReLU的功能差异

查看源文件

tf.keras.layers.PReLU

tf.keras.layers.PReLU(
  alpha_initializer='zeros',
  alpha_regularizer=None,
  alpha_constraint=None,
  shared_axes=None
)(x) -> Tensor

更多内容详见tf.keras.layers.PReLU

mindspore.nn.PReLU

class mindspore.nn.PReLU(channel=1, w=0.25)(x) -> Tensor

更多内容详见mindspore.nn.PReLU

差异对比

TensorFlow:PReLU激活函数。

MindSpore:MindSpore此接口功能与TensorFlow基本一致,但参数设置不同。

分类

子类

TensorFlow

MindSpore

差异

参数

参数1

alpha_initializer

w

权重的初始化函数,参数功能一致,默认值不同,参数名不同

参数2

alpha_regularizer

-

权重的正则化器。MindSpore无此参数

参数3

alpha_constraint

-

权重的约束。MindSpore无此参数

参数4

shared_axes

-

共享激活函数的可学习参数的轴。MindSpore无此参数

参数5

-

channel

输入张量的通道数,默认值为1。TensorFlow无此参数

输入

单输入

x

x

-

代码示例1

TensorFlow的alpha_initializer参数与MindSpore的参数功能一致,默认值不同,参数名不同,TensorFlow默认alpha为0.0,故使用MindSpore只需将w设置为0.0即可实现相同功能。

# TensorFlow
import tensorflow as tf
from keras.layers import PReLU
import numpy as np

x = tf.constant([[-1.0, 2.2], [3.3, -4.0]], dtype=tf.float32)
m = PReLU()
out = m(x)
print(out.numpy())
# [[0.  2.2]
#  [3.3 0. ]]

# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np

x = Tensor(np.array([[-1.0, 2.2], [3.3, -4.0]]), mindspore.float32)
prelu = nn.PReLU(w=0.0)
output = prelu(x)
print(output)
# [[0.  2.2]
#  [3.3 0. ]]

代码示例2

TensorFlow的alpha_initializer参数可以通过初始化函数改变alpha值,MindSpore只需将w设置为对应值即可实现相同功能。

# TensorFlow
import tensorflow as tf
from keras.layers import PReLU
import numpy as np
x = tf.constant([[-1.0, 2.2], [3.3, -4.0]], dtype=tf.float32)
m = PReLU(alpha_initializer=tf.constant_initializer(0.5))
out = m(x)
print(out.numpy())
# [[-0.5  2.2]
#  [ 3.3 -2. ]]

# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np
x = Tensor(np.array([[-1.0, 2.2], [3.3, -4.0]]), mindspore.float32)
prelu = nn.PReLU(w=0.5)
output = prelu(x)
print(output)
# [[-0.5  2.2]
#  [ 3.3 -2. ]]