比较与torch.nn.MSELoss的功能差异
torch.nn.MSELoss
torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')(input, target) -> Tensor
更多内容详见torch.nn.MSELoss。
mindspore.nn.MSELoss
class mindspore.nn.MSELoss(reduction='mean')(logits, labels) -> Tensor
更多内容详见mindspore.nn.MSELoss。
差异对比
PyTorch:用于计算输入input和target每一个元素的均方误差,reduction参数指定应用于loss的规约类型。
MindSpore:实现与PyTorch一致的功能。
分类 |
子类 |
PyTorch |
MindSpore |
差异 |
---|---|---|---|---|
参数 |
参数1 |
size_average |
- |
已弃用,被reduction替代 |
参数2 |
reduce |
- |
已弃用,被reduction替代 |
|
参数3 |
reduction |
reduction |
- |
|
输入 |
输入1 |
input |
logits |
功能一致,参数名不同 |
输入2 |
target |
labels |
功能一致,参数名不同 |
代码示例1
计算
input
和target
的均方误差。默认情况下,reduction='mean'
。
# PyTorch
import torch
from torch import nn
from torch import tensor
import numpy as np
loss = nn.MSELoss()
input_ = np.array([1, 1, 1, 1]).reshape((2, 2))
inputs = tensor(input_, dtype=torch.float32)
target_ = np.array([1, 2, 2, 1]).reshape((2, 2))
target = tensor(target_, dtype=torch.float32)
output = loss(inputs, target)
print(output.numpy())
# 0.5
# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np
loss = nn.MSELoss()
input_ = np.array([1, 1, 1, 1]).reshape((2, 2))
inputs = Tensor(input_, dtype=mindspore.float32)
target_ = np.array([1, 2, 2, 1]).reshape((2, 2))
target = Tensor(target_, dtype=mindspore.float32)
output = loss(inputs, target)
print(output)
# 0.5
代码示例2
计算
input
和target
的均方误差,以求和方式规约。
# PyTorch
import torch
from torch import nn
from torch import tensor
import numpy as np
loss = nn.MSELoss(reduction='sum')
input_ = np.array([1, 1, 1, 1]).reshape((2, 2))
inputs = tensor(input_, dtype=torch.float32)
target_ = np.array([1, 2, 2, 1]).reshape((2, 2))
target = tensor(target_, dtype=torch.float32)
output = loss(inputs, target)
print(output.numpy())
# 2.0
# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import numpy as np
loss = nn.MSELoss(reduction='sum')
input_ = np.array([1, 1, 1, 1]).reshape((2, 2))
inputs = Tensor(input_, dtype=mindspore.float32)
target_ = np.array([1, 2, 2, 1]).reshape((2, 2))
target = Tensor(target_, dtype=mindspore.float32)
output = loss(inputs, target)
print(output)
# 2.0