文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.train.ROC

class mindspore.train.ROC(class_num=None, pos_label=None)[源代码]

计算ROC曲线。适用于求解二分类和多分类问题。在多分类的情况下,将基于one-vs-the-rest的方法进行计算。

参数:
  • class_num (int) - 类别数。对于二分类问题,此入参可以不设置。默认值:None。

  • pos_label (int) - 正类的类别值。二分类问题中,不设置此入参,即 pos_label 为None时,正类类别值默认为1;用户可以自行设置正类类别值为其他值。多分类问题中,用户不应设置此参数,因为它将在[0,num_classes-1]范围内迭代更改。默认值:None。

支持平台:

Ascend GPU CPU

样例:

>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore.train import ROC
>>>
>>> # 1) binary classification example
>>> x = Tensor(np.array([3, 1, 4, 2]))
>>> y = Tensor(np.array([0, 1, 2, 3]))
>>> metric = ROC(pos_label=2)
>>> metric.clear()
>>> metric.update(x, y)
>>> fpr, tpr, thresholds = metric.eval()
>>> print(fpr)
[0. 0. 0.33333333 0.6666667 1.]
>>> print(tpr)
[0. 1. 1. 1. 1.]
>>> print(thresholds)
[5 4 3 2 1]
>>>
>>> # 2) multiclass classification example
>>> x = Tensor(np.array([[0.28, 0.55, 0.15, 0.05], [0.10, 0.20, 0.05, 0.05], [0.20, 0.05, 0.15, 0.05],
...                     [0.05, 0.05, 0.05, 0.75]]))
>>> y = Tensor(np.array([0, 1, 2, 3]))
>>> metric = ROC(class_num=4)
>>> metric.clear()
>>> metric.update(x, y)
>>> fpr, tpr, thresholds = metric.eval()
>>> print(fpr)
[array([0., 0., 0.33333333, 0.66666667, 1.]), array([0., 0.33333333, 0.33333333, 1.]),
array([0., 0.33333333, 1.]), array([0., 0., 1.])]
>>> print(tpr)
[array([0., 1., 1., 1., 1.]), array([0., 0., 1., 1.]), array([0., 1., 1.]), array([0., 1., 1.])]
>>> print(thresholds)
[array([1.28, 0.28, 0.2, 0.1, 0.05]), array([1.55, 0.55, 0.2, 0.05]), array([1.15, 0.15, 0.05]),
array([1.75, 0.75, 0.05])]
clear()[源代码]

内部评估结果清零。

eval()[源代码]

计算ROC曲线。

返回:

tuple,由 fprtprthresholds 组成。

  • fpr (np.array) - 假正率。二分类情况下,返回不同阈值下的fpr;多分类情况下,则为fpr(false positive rate)的列表,列表的每个元素代表一个类别。

  • tps (np.array) - 真正率。二分类情况下,返回不同阈值下的tps;多分类情况下,则为tps(true positive rate)的列表,列表的每个元素代表一个类别。

  • thresholds (np.array) - 用于计算假正率和真正率的阈值。

异常:
  • RuntimeError - 如果没有先调用update方法,则会报错。

update(*inputs)[源代码]

使用 y_predy 更新内部评估结果。

参数:
  • inputs - 输入 y_predyy_predy 是Tensor、list或numpy.ndarray。y_pred 一般情况下是范围为 [0,1] 的浮点数列表,shape为 (N,C),其中 N 是用例数,C 是类别数。y 为整数值,如果为one-hot格式,shape为 (N,C),如果是类别索引,shape为 (N,)