mindspore.ops.operations.linalg_ops 源代码

# Copyright 2022-2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""Operators for linalg."""

from __future__ import absolute_import
from mindspore import _checkparam as Validator
from mindspore.ops.primitive import Primitive
from mindspore.ops.primitive import prim_attr_register


[文档]class Geqrf(Primitive): r""" Decomposes a matrix into the product of an orthogonal matrix `Q` and an upper triangular matrix `R`. The process is called QR decomposition: :math:`A = QR`. Both `Q` and `R` matrices are stored in the same output tensor `y`. The elements of `R` are stored on and above the diagonal, whereas elementary reflectors (or Householder vectors) implicitly defining matrix `Q` are stored below the diagonal. This function returns two tensors (`y`, `tau`). .. warning:: This is an experimental API that is subject to change or deletion. Inputs: - **x** (Tensor) - Tensor of shape :math:`(*, m, n)`, input must be a matrix greater than or equal to 2D, with dtype of float32, float64, complex64, complex128. Outputs: - **y** (Tensor) - Tensor of shape :math:`(*, m, n)`, has the same dtype as the `x`. - **tau** (Tensor) - Tensor of shape :math:`(*, p)` and :math:`p = min(m, n)`, has the same dtype as the `x`. Raises: TypeError: If `x` is not a Tensor. TypeError: If the dtype of `x` is neither float32, float64, complex64, complex128. ValueError: If `x` dimension is less than 2 Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> input_x = Tensor(np.array([[-2.0, -1.0], [1.0, 2.0]]).astype(np.float32)) >>> geqrf = ops.Geqrf() >>> y, tau = geqrf(input_x) >>> print(y) [[ 2.236068 1.7888544] [-0.236068 1.3416407]] >>> print(tau) [1.8944271 0. ] """ @prim_attr_register def __init__(self): """Initialize Geqrf""" self.init_prim_io_names(inputs=['x'], outputs=['y', 'tau'])
[文档]class Svd(Primitive): """ Computes the singular value decompositions of one or more matrices. Refer to :func:`mindspore.ops.svd` for more details. Args: full_matrices (bool, optional): If true, compute full-sized :math:`U` and :math:`V`. If false, compute only the leading P singular vectors, with P is the minimum of M and N. Default: False. compute_uv (bool, optional): If true, compute the left and right singular vectors. If false, compute only the singular values. Default: True. Inputs: - **input** (Tensor) - Tensor of the matrices to be decomposed. The shape should be :math:`(*, M, N)`, the supported dtype are float32 and float64. Outputs: - **s** (Tensor) - Singular values. The shape is :math:`(*, P)`. - **u** (Tensor) - Left singular vectors. If `compute_uv` is False, u will be zero value. The shape is :math:`(*, M, P)`. If `full_matrices` is True, the shape will be :math:`(*, M, M)`. - **v** (Tensor) - Right singular vectors. If `compute_uv` is False, v will be zero value. The shape is :math:`(*, N, P)`. If `full_matrices` is True, the shape will be :math:`(*, N, N)`. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import Tensor, set_context >>> from mindspore import ops >>> set_context(device_target="CPU") >>> svd = ops.Svd(full_matrices=True, compute_uv=True) >>> a = Tensor(np.array([[1, 2], [-4, -5], [2, 1]]).astype(np.float32)) >>> s, u, v = svd(a) >>> print(s) [7.0652843 1.040081 ] >>> print(u) [[ 0.30821905 -0.48819482 0.81649697] [-0.90613353 0.11070572 0.40824813] [ 0.2896955 0.8656849 0.4082479 ]] >>> print(v) [[ 0.63863593 0.769509 ] [ 0.769509 -0.63863593]] """ @prim_attr_register def __init__(self, full_matrices=False, compute_uv=True): super().__init__(name="Svd") self.init_prim_io_names(inputs=['a'], outputs=['s', 'u', 'v']) self.full_matrices = Validator.check_value_type("full_matrices", full_matrices, [bool], self.name) self.compute_uv = Validator.check_value_type("compute_uv", compute_uv, [bool], self.name) self.add_prim_attr('full_matrices', self.full_matrices) self.add_prim_attr('compute_uv', self.compute_uv)
class Eigh(Primitive): """ Eigh decomposition(Symmetric matrix) Ax = lambda * x """ @prim_attr_register def __init__(self, compute_eigenvectors=True, lower=True): super().__init__(name="Eigh") self.init_prim_io_names(inputs=['A'], outputs=['output_w', 'output_v']) self.compute_eigenvectors = Validator.check_value_type( "compute_eigenvectors", compute_eigenvectors, [bool], self.name) self.lower = Validator.check_value_type("lower", lower, [bool], self.lower) self.add_prim_attr('lower', self.lower) self.add_prim_attr('compute_eigenvectors', self.compute_eigenvectors)