文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.scipy.optimize.minimize

mindspore.scipy.optimize.minimize(func, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)[源代码]

Minimization of scalar function of one or more variables.

This API for this function matches SciPy with some minor deviations:

  • Gradients of func are calculated automatically using MindSpore’s autodiff support when the value of jac is None.

  • The method argument is required. A exception will be thrown if you don’t specify a solver.

  • Various optional arguments “hess” “hessp” “bounds” “constraints” “tol” “callback” in the SciPy interface have not yet been implemented.

  • Optimization results may differ from SciPy due to differences in the line search implementation.

说明

  • minimize does not yet support differentiation or arguments in the form of multi-dimensional Tensor, but support for both is planned.

  • minimize is not supported on Windows platform yet.

参数
  • func (Callable) – the objective function to be minimized, fun(x,args)>float, where x is a 1-D array with shape (n,) and args is a tuple of the fixed parameters needed to completely specify the function. fun must support differentiation if jac is None.

  • x0 (Tensor) – initial guess. Array of real elements of size (n,), where n is the number of independent variables.

  • args (Tuple) – extra arguments passed to the objective function. Default: ().

  • method (str) – solver type. Should be one of “BFGS” and “LBFGS”.

  • jac (Callable, optional) – method for computing the gradient vector. Only for “BFGS” and “LBFGS”. if it is None, the gradient will be estimated with gradient of func. if it is a callable, it should be a function that returns the gradient vector: jac(x,args)>array_like,shape(n,) where x is an array with shape (n,) and args is a tuple with the fixed parameters.

  • tol (float, optional) – tolerance for termination. For detailed control, use solver-specific options. Default: None.

  • options (Mapping[str, Any], optional) –

    a dictionary of solver options. All methods accept the following generic options, Default: None.

    • history_size (int): size of buffer used to help to update inv hessian, only used with method=”LBFGS”. Default: 20.

    • maxiter (int): Maximum number of iterations to perform. Depending on the method each iteration may use several function evaluations.

返回

OptimizeResults, object holding optimization results.

Supported Platforms:

GPU CPU

样例

>>> import numpy as onp
>>> from mindspore.scipy.optimize import minimize
>>> from mindspore.common import Tensor
>>> x0 = Tensor(onp.zeros(2).astype(onp.float32))
>>> def func(p):
>>>     x, y = p
>>>     return (x ** 2 + y - 11.) ** 2 + (x + y ** 2 - 7.) ** 2
>>> res = minimize(func, x0, method='BFGS', options=dict(maxiter=None, gtol=1e-6))
>>> print(res.x)
>>> l_res = minimize(func, x0, method='LBFGS', options=dict(maxiter=None, gtol=1e-6))
>>> print(res.x)
[3. 2.]
[3. 2.]