文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.ScatterNdUpdate

class mindspore.ops.ScatterNdUpdate(use_locking=True)[源代码]

使用给定值以及输入索引更新输入数据的值。

input_x 的rank为P,而 indices 的rank为Q, Q >= 2

indices 的shape为 (i0,i1,...,iQ2,N)N <= P

indices 的最后一个维度(长度为 N )表示沿着 input_xN 个维度进行切片。

updates 表示rank为 Q-1+P-N 的Tensor,shape为 (i0,i1,...,iQ2,x_shapeN,...,x_shapeP1)

输入的 input_xupdates 遵循隐式类型转换规则,以确保数据类型一致。如果数据类型不同,则低优先级数据类型将转换为相对最高优先级的数据类型。当需要参数的数据类型转换时,会抛出RuntimeError异常。

参数:
  • use_locking (bool) - 是否启用锁保护。默认值:True。

输入:
  • input_x (Parameter) - ScatterNdUpdate的输入,任意维度的Parameter。

  • indices (Tensor) - 指定更新操作的索引,数据类型为int32或者int64。

  • updates (Tensor) - 指定与 input_x 更新操作的Tensor,类型与输入相同。shape为 indices.shape[:-1] + x.shape[indices.shape[-1]:]

输出:

Tensor,shape和数据类型与输入 input_x 相同。

异常:
  • TypeError - use_locking 不是bool。

  • TypeError - indices 不是int32或者int64。

  • RuntimeError - 当 input_xupdates 类型不一致,需要进行类型转换时,如果 updates 不支持转成参数 input_x 需要的数据类型,就会报错。

支持平台:

Ascend GPU CPU

样例:

>>> np_x = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]])
>>> input_x = mindspore.Parameter(Tensor(np_x, mindspore.float32), name="x")
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
>>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32)
>>> op = ops.ScatterNdUpdate()
>>> output = op(input_x, indices, updates)
>>> print(output)
[[1.   0.3   3.6]
 [0.4  2.2  -3.2]]