mindspore.ops.ScatterMul

class mindspore.ops.ScatterMul(use_locking=False)[源代码]

根据指定更新值和输入索引通过乘法运算更新输入数据的值。

对于 indices.shape 的每个 i, …, j

\[\text{input_x}[\text{indices}[i, ..., j], :] \mathrel{*}= \text{updates}[i, ..., j, :]\]

输入的 input_xupdates 遵循隐式类型转换规则,以确保数据类型一致。如果数据类型不同,则低精度数据类型将转换为高精度的数据类型。当参数的数据类型需要转换时,则会抛出RuntimeError异常。

参数:
  • use_locking (bool) - 是否启用锁保护。默认值:False。

输入:
  • input_x (Parameter) - ScatterMul的输入,任意维度的Parameter。shape: \((N, *)\) ,其中 \(*\) 表示任意数量的附加维度。

  • indices (Tensor) - 指定相乘操作的索引,数据类型必须为mindspore.int32。

  • updates (Tensor) - 指定与 input_x 相乘的Tensor,数据类型与 input_x 相同,shape为 indices.shape + x.shape[1:]

输出:

Tensor,更新后的 input_x ,shape和类型与 input_x 相同。

异常:
  • TypeError - use_locking 不是bool。

  • TypeError - indices 不是int32。

  • ValueError - updates 的shape不等于 indices.shape + x.shape[1:]

  • RuntimeError - 当 input_xupdates 类型不一致,需要进行类型转换时,如果 updates 不支持转成参数 input_x 需要的数据类型,就会报错。

支持平台:

Ascend GPU CPU

样例:

>>> from mindspore import Tensor
>>> from mindspore import dtype as mstype
>>> import mindspore.ops as ops
>>> import numpy as np
>>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mstype.float32), name="x")
>>> indices = Tensor(np.array([0, 1]), mstype.int32)
>>> updates = Tensor(np.array([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]), mstype.float32)
>>> scatter_mul = ops.ScatterMul()
>>> output = scatter_mul(input_x, indices, updates)
>>> print(output)
[[2. 2. 2.]
 [4. 4. 4.]]
>>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized.
>>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mstype.float32), name="x")
>>> # for indices = [[0, 1], [1, 1]]
>>> # step 1: [0, 1]
>>> # input_x[0] = [1.0, 1.0, 1.0] * [1.0, 1.0, 1.0] = [1.0, 1.0, 1.0]
>>> # input_x[1] = [2.0, 2.0, 2.0] * [3.0, 3.0, 3.0] = [6.0, 6.0, 6.0]
>>> # step 2: [1, 1]
>>> # input_x[1] = [6.0, 6.0, 6.0] * [7.0, 7.0, 7.0] = [42.0, 42.0, 42.0]
>>> # input_x[1] = [42.0, 42.0, 42.0] * [9.0, 9.0, 9.0] = [378.0, 378.0, 378.0]
>>> indices = Tensor(np.array([[0, 1], [1, 1]]), mstype.int32)
>>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]],
...                            [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mstype.float32)
>>> scatter_mul = ops.ScatterMul()
>>> output = scatter_mul(input_x, indices, updates)
>>> print(output)
[[  1.   1.   1.]
 [378. 378. 378.]]
>>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized.
>>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mstype.float32), name="x")
>>> # for indices = [[1, 0], [1, 1]]
>>> # step 1: [1, 0]
>>> # input_x[0] = [1.0, 1.0, 1.0] * [3.0, 3.0, 3.0] = [3.0, 3.0, 3.0]
>>> # input_x[1] = [2.0, 2.0, 2.0] * [1.0, 1.0, 1.0] = [2.0, 2.0, 2.0]
>>> # step 2: [1, 1]
>>> # input_x[1] = [2.0, 2.0, 2.0] * [7.0, 7.0, 7.0] = [14.0, 14.0, 14.0]
>>> # input_x[1] = [14.0, 14.0, 14.0] * [9.0, 9.0, 9.0] = [126.0, 126.0, 126.0]
>>> indices = Tensor(np.array([[1, 0], [1, 1]]), mstype.int32)
>>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]],
...                            [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mstype.float32)
>>> scatter_mul = ops.ScatterMul()
>>> output = scatter_mul(input_x, indices, updates)
>>> print(output)
[[  3.   3.   3.]
 [126. 126. 126.]]
>>> # for input_x will be updated after the operation is completed. input_x need to be re-initialized.
>>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mstype.float32), name="x")
>>> # for indices = [[0, 1], [0, 1]]
>>> # step 1: [0, 1]
>>> # input_x[0] = [1.0, 1.0, 1.0] * [1.0, 1.0, 1.0] = [1.0, 1.0, 1.0]
>>> # input_x[1] = [2.0, 2.0, 2.0] * [3.0, 3.0, 3.0] = [6.0, 6.0, 6.0]
>>> # step 2: [0, 1]
>>> # input_x[0] = [1.0, 1.0, 1.0] * [7.0, 7.0, 7.0] = [7.0, 7.0, 7.0]
>>> # input_x[1] = [6.0, 6.0, 6.0] * [9.0, 9.0, 9.0] = [54.0, 54.0, 54.0]
>>> indices = Tensor(np.array([[0, 1], [0, 1]]), mstype.int32)
>>> updates = Tensor(np.array([[[1.0, 1.0, 1.0], [3.0, 3.0, 3.0]],
...                            [[7.0, 7.0, 7.0], [9.0, 9.0, 9.0]]]), mstype.float32)
>>> scatter_mul = ops.ScatterMul()
>>> output = scatter_mul(input_x, indices, updates)
>>> print(output)
[[ 7.  7.  7.]
 [54. 54. 54.]]