文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.gather_nd

mindspore.ops.gather_nd(input_x, indices)[源代码]

根据索引获取输入Tensor指定位置上的元素。

indices 是K维整型Tensor,则可看作是从 input_x 中取K-1维Tensor,每个元素都是一个切片:

output[(i0,...,iK2)]=input_x[indices[(i0,...,iK2)]]

indices 的最后一维的长度不能超过 input_x 的秩: indices.shape[1]<=input_x.rank

参数:

  • input_x (Tensor) - GatherNd的输入。任意维度的Tensor。

  • indices (Tensor) - 索引Tensor,其数据类型为int32或int64。

返回:

Tensor,数据类型与 input_x 相同,shape为 indices_shape[:-1] + input_x_shape[indices_shape[-1]:]

异常:

  • ValueError - input_x 的shape长度小于 indices 的最后一维的长度。

支持平台:

Ascend GPU CPU

样例:

>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
>>> output = ops.gather_nd(input_x, indices)
>>> print(output)
[-0.1  0.5]