mindspore.ops.matrix_set_diag
- mindspore.ops.matrix_set_diag(x, diagonal, k=0, align='RIGHT_LEFT')[源代码]
返回具有新的对角线值的批处理矩阵张量。 给定输入 x 和对角线 diagonal ,此操作返回与 x 具有相同形状和值的张量,但返回的张量除开最内层矩阵的对角线。这些值将被对角线中的值覆盖。如果某些对角线比 max_diag_len 短,则需要被填充。 其中 max_diag_len 指的是对角线的最长长度。 diagonal 的维度
必须等于对角线个数 num_diags , diagonal 的维度 必须 等于最长对角线值 max_diag_len 。 设 x 具有 r + 1 维 。 当 k 是整数或 时,对角线 diagonal 具有形状 为 。否则,它具有形状为 。参数:
x (Tensor) - 输入Tensor,其维度为 r+1 需要满足 r >=1 。
diagonal (Tensor) - 输入对角线Tensor,具有与 x 相同的数据类型。当 k 是整数或
时,其为维度 r ,否则,其维度 r + 1 。k (Union[int, Tensor], optional) - int32常量或int32类型Tensor。对角线偏移。正值表示超对角线,0表示主对角线,负值表示次对角线。k可以是单个整数(对于单个对角线)或一对整数,指定矩阵带的上界和下界,且 k[0] 不得大于 k[1] 。该值必须在必须在
中。默认值:0。align (str, optional) - 字符串,指定超对角线和次对角线的对齐方式。可选值:”RIGHT_LEFT”、”LEFT_RIGHT”、”LEFT_LEFT”、”RIGHT_RIGHT”。例如,”RIGHT_LEFT”表示将超对角线与右侧对齐(左侧填充行),将次对角线与左侧对齐(右侧填充行)。默认值:”RIGHT_LEFT”。
返回:
Tensor,与 x 的类型相同。
设 x 有 r+1 维
。输出Tensor的维度为 r+1 ,为 。异常:
TypeError - x 或者 diagonal 不为Tensor。
TypeError - x 与 diagonal 数据类型不同。
TypeError - k 的数据类型不为int32。
ValueError - align 取值不在合法值集合内。
ValueError - k 的维度不为0或1。
ValueError - x 的维度不大于等于2。
ValueError - k 的大小不为1或2。
ValueError - 当 k 的大小为2时,k[1]小于k[0]。
ValueError - 对角线 diagonal 的维度与输入 x 的维度不匹配。
ValueError - 对角线 diagonal 的维度信息与输入 x 的维度信息不匹配。
ValueError - 对角线 diagonal 的维度
不等于与对角线个数 num_diags 。ValueError - k 的取值不在
范围内。ValueError - 对角线 diagonal 的维度shape[-1] 不等于最长对角线长度 max_diag_len
。
- 支持平台:
Ascend
GPU
CPU
样例:
>>> x = Tensor(np.array([[7, 7, 7, 7], ... [7, 7, 7, 7], ... [7, 7, 7, 7]]), mindspore.float32) >>> diagonal = Tensor(np.array([[0, 9, 1], ... [6, 5, 8], ... [1, 2, 3], ... [4, 5, 0]]), mindspore.float32) >>> k = Tensor(np.array([-1, 2]), mindspore.int32) >>> align = 'RIGHT_LEFT' >>> output = ops.matrix_set_diag(x, diagonal, k, align) >>> print(output) [[1. 6. 9. 7.] [4. 2. 5. 1.] [7. 5. 3. 8.]] >>> print(output.shape) (3, 4)