mindspore.dataset.audio.BandBiquad
- class mindspore.dataset.audio.BandBiquad(sample_rate, central_freq, Q=0.707, noise=False)[源代码]
给音频波形施加双极点带通滤波器。
带通滤波器的频率响应在中心频率附近呈对数下降,下降的斜率由带宽决定,频带两端处输出音频的幅度将是原始幅度的一半。
接口实现方式类似于 SoX库 。
Note
待处理音频维度需为(…, time)。
参数:
sample_rate (int) - 采样频率(单位:Hz),不能为零。
central_freq (float) - 中心频率(单位:Hz)。
Q (float, 可选) - 品质因子 ,能够反映带宽与采样频率和中心频率的关系,取值范围为(0, 1],默认值:0.707。
noise (bool, 可选) - 若为True,则使用非音调音频(如打击乐)模式;若为False,则使用音调音频(如语音、歌曲或器乐)模式,默认值:False。
异常:
TypeError - 当 sample_rate 的类型不为int。
ValueError - 当 sample_rate 的数值为0。
TypeError - 当 central_freq 的类型不为float。
TypeError - 当 Q 的类型不为float。
ValueError - 当 Q 取值不在(0, 1]范围内。
TypeError - 当 noise 的类型不为bool。
RuntimeError - 当输入音频的shape不为<…, time>。
- 支持平台:
CPU
样例:
>>> import numpy as np >>> >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]]) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"]) >>> transforms = [audio.BandBiquad(44100, 200.0)] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])