mindspore.mint.nn.functional.avg_pool2d
- mindspore.mint.nn.functional.avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)[source]
Applies a 2D average pooling over an input Tensor which can be regarded as a composition of 2D input planes. Typically the input is of shape
, outputs regional average in the -dimension. Given kernel size and stride , the operation is as follows.Note
On the Atlas platform, when calculating the input, the precision is degraded from float32 to float16.
- Parameters
input (Tensor) – Tensor of shape
or .kernel_size (Union[int, tuple[int], list[int]]) – The size of kernel used to take the average value. Can be a single number or a tuple
.stride (Union[int, tuple[int], list[int]], optional) – The distance of kernel moving. Can be a single number or a tuple
. Default:None
, where its value is equal to kernel_size.padding (Union[int, tuple[int], list[int]], optional) – Implicit zero padding to be added on both sides. Can be a single number or a tuple
. Default:0
.ceil_mode (bool, optional) – If True, apply ceil instead of floor to compute the output shape. Default:
False
.count_include_pad (bool, optional) – If True, include the zero-padding in the averaging calculation. Default:
True
.divisor_override (int, optional) – If specified, it will be used as divisor in the averaging calculation, otherwise size of pooling region will be used. Default:
None
.
- Returns
Tensor, with shape
or .- Raises
TypeError – If input is not a Tensor.
TypeError – If kernel_size or stride is neither int nor tuple.
TypeError – If ceil_mode or count_include_pad is not a bool.
TypeError – If divisor_override is not an int or None.
ValueError – If the dimension of input is not equal to 3 or 4.
ValueError – If kernel_size or stride is less than 1.
ValueError – If value of padding is less than 0.
ValueError – If kernel_size, padding or stride is a tuple whose length is not equal to 1 or 2.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, mint >>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4), mindspore.float32) >>> output = mint.nn.functional.avg_pool2d(x, kernel_size=2, stride=1) >>> print(output) [[[[ 2.5 3.5 4.5] [ 6.5 7.5 8.5]] [[14.5 15.5 16.5] [18.5 19.5 20.5]] [[26.5 27.5 28.5] [30.5 31.5 32.5]]]]