mindspore.mint.nn.functional.avg_pool2d
- mindspore.mint.nn.functional.avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)[source]
Applies a 2D average pooling over an input Tensor which can be regarded as a composition of 2D input planes. Typically the input is of shape \((N, C, H_{in}, W_{in})\) , outputs regional average in the \((H_{in}, W_{in})\) -dimension. Given kernel size \((kH, kW)\) and stride , the operation is as follows.
Note
On the Atlas platform, when calculating the input, the precision is degraded from float32 to float16.
\[\text{output}(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} \text{input}(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)\]- Parameters
input (Tensor) – Tensor of shape \((N, C, H_{in}, W_{in})\) or \((C, H_{in}, W_{in})\).
kernel_size (Union[int, tuple[int], list[int]]) – The size of kernel used to take the average value. Can be a single number or a tuple \((kH, kW)\) .
stride (Union[int, tuple[int], list[int]], optional) – The distance of kernel moving. Can be a single number or a tuple \((sH, sW)\) . Default:
None
, where its value is equal to kernel_size.padding (Union[int, tuple[int], list[int]], optional) – Implicit zero padding to be added on both sides. Can be a single number or a tuple \((padH, padW)\) . Default:
0
.ceil_mode (bool, optional) – If True, apply ceil instead of floor to compute the output shape. Default:
False
.count_include_pad (bool, optional) – If True, include the zero-padding in the averaging calculation. Default:
True
.divisor_override (int, optional) – If specified, it will be used as divisor in the averaging calculation, otherwise size of pooling region will be used. Default:
None
.
- Returns
Tensor, with shape \((N, C, H_{out}, W_{out})\) or \((C, H_{out}, W_{out})\).
\[\begin{split}\begin{array}{ll} \\ H_{out} = \frac{H_{in} + 2 \times padding[0] - kernel\_size[0]}{stride[0]} + 1 \\ W_{out} = \frac{W_{in} + 2 \times padding[1] - kernel\_size[1]}{stride[1]} + 1 \end{array}\end{split}\]- Raises
TypeError – If input is not a Tensor.
TypeError – If kernel_size or stride is neither int nor tuple.
TypeError – If ceil_mode or count_include_pad is not a bool.
TypeError – If divisor_override is not an int or None.
ValueError – If the dimension of input is not equal to 3 or 4.
ValueError – If kernel_size or stride is less than 1.
ValueError – If value of padding is less than 0.
ValueError – If kernel_size, padding or stride is a tuple whose length is not equal to 1 or 2.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, mint >>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4), mindspore.float32) >>> output = mint.nn.functional.avg_pool2d(x, kernel_size=2, stride=1) >>> print(output) [[[[ 2.5 3.5 4.5] [ 6.5 7.5 8.5]] [[14.5 15.5 16.5] [18.5 19.5 20.5]] [[26.5 27.5 28.5] [30.5 31.5 32.5]]]]