Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.mint.nn.MSELoss

class mindspore.mint.nn.MSELoss(reduction='mean')[source]

Calculates the mean squared error between the predicted value and the label value.

For simplicity, let x and y be 1-dimensional Tensor with length N, the unreduced loss (i.e. with argument reduction set to 'none') of x and y is given as:

(x,y)=L={l1,,lN},withln=(xnyn)2.

where N is the batch size. If reduction is not 'none', then:

(x,y)={mean(L),if reduction='mean';sum(L),if reduction='sum'.
Parameters

reduction (str, optional) –

Apply specific reduction method to the output: 'none' , 'mean' , 'sum' . Default: 'mean' .

  • 'none': no reduction will be applied.

  • 'mean': compute and return the mean of elements in the output.

  • 'sum': the output elements will be summed.

Inputs:
  • logits (Tensor) - The predicted value of the input. Tensor of any dimension. The data type needs to be consistent with the labels. It should also be broadcastable with the labels.

  • labels (Tensor) - The input label. Tensor of any dimension. The data type needs to be consistent with the logits. It should also be broadcastable with the logits.

Outputs:
  • Tensor. If reduction is 'mean' or 'sum', the shape of output is Tensor Scalar.

  • If reduction is 'none', the shape of output is the broadcasted shape of logits and labels .

Raises
  • ValueError – If reduction is not one of 'mean', 'sum' or 'none'.

  • ValueError – If logits and labels are not broadcastable.

  • TypeError – If logits and labels are in different data type.

Supported Platforms:

Ascend

Examples

>>> import mindspore
>>> from mindspore import Tensor, mint
>>> import numpy as np
>>> # Case 1: logits.shape = labels.shape = (3,)
>>> loss = mint.nn.MSELoss()
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([1, 1, 1]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
1.6666667
>>> # Case 2: logits.shape = (3,), labels.shape = (2, 3)
>>> loss = mint.nn.MSELoss(reduction='none')
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> labels = Tensor(np.array([[1, 1, 1], [1, 2, 2]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
[[0. 1. 4.]
 [0. 0. 1.]]