mindspore.dataset.vision.ResizedCrop

class mindspore.dataset.vision.ResizedCrop(top, left, height, width, size, interpolation=Inter.BILINEAR)[source]

Crop the input image at a specific region and resize it to desired size.

Parameters
  • top (int) – Horizontal ordinate of the upper left corner of the crop region.

  • left (int) – Vertical ordinate of the upper left corner of the crop region.

  • height (int) – Height of the crop region.

  • width (int) – Width of the cropp region.

  • size (Union[int, Sequence[int, int]]) – The size of the output image. If int is provided, the smaller edge of the image will be resized to this value, keeping the image aspect ratio the same. If Sequence[int, int] is provided, it should be (height, width).

  • interpolation (Inter, optional) – Image interpolation method defined by Inter . Default: Inter.BILINEAR.

Raises
Supported Platforms:

CPU

Examples

>>> import numpy as np
>>> import mindspore.dataset as ds
>>> import mindspore.dataset.vision as vision
>>> from mindspore.dataset.vision import Inter
>>>
>>> # Use the transform in dataset pipeline mode
>>> transforms_list = [vision.ResizedCrop(0, 0, 64, 64, (100, 75), Inter.BILINEAR)]
>>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8)
>>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"])
>>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"])
>>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
...     print(item["image"].shape, item["image"].dtype)
...     break
(100, 75, 3) uint8
>>>
>>> # Use the transform in eager mode
>>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8)
>>> output = vision.ResizedCrop(0, 0, 1, 1, (5, 5), Inter.BILINEAR)(data)
>>> print(output.shape, output.dtype)
(5, 5, 3) uint8
Tutorial Examples:
device(device_target='CPU')[source]

Set the device for the current operator execution.

  • When the device is Ascend, input/output shape should be limited from [4, 6] to [32768, 32768].

Parameters

device_target (str, optional) – The operator will be executed on this device. Currently supports CPU and Ascend . Default: CPU .

Raises
  • TypeError – If device_target is not of type str.

  • ValueError – If device_target is not within the valid set of [‘CPU’, ‘Ascend’].

Supported Platforms:

CPU Ascend

Examples

>>> import numpy as np
>>> import mindspore.dataset as ds
>>> import mindspore.dataset.vision as vision
>>> from mindspore.dataset.vision import Inter
>>>
>>> # Use the transform in dataset pipeline mode
>>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8)
>>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"])
>>> resize_crop_op = vision.ResizedCrop(0, 0, 64, 64, (100, 75)).device("Ascend")
>>> transforms_list = [resize_crop_op]
>>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"])
>>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
...     print(item["image"].shape, item["image"].dtype)
...     break
(100, 75, 3) uint8
>>>
>>> # Use the transform in eager mode
>>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8)
>>> output = vision.ResizedCrop(0, 0, 64, 64, (32, 16), Inter.BILINEAR).device("Ascend")(data)
>>> print(output.shape, output.dtype)
(32, 16, 3) uint8
Tutorial Examples: