mindspore.dataset.vision.Erase
- class mindspore.dataset.vision.Erase(top, left, height, width, value=0, inplace=False)[source]
Erase the input image with given value.
- Parameters
top (int) – Vertical ordinate of the upper left corner of erased region.
left (int) – Horizontal ordinate of the upper left corner of erased region.
height (int) – Height of erased region.
width (int) – Width of erased region.
value (Union[int, Sequence[int, int, int]], optional) – Pixel value used to pad the erased area. Default:
0
. If int is provided, it will be used for all RGB channels. If Sequence[int, int, int] is provided, it will be used for R, G, B channels respectively.inplace (bool, optional) – Whether to apply erasing inplace. Default:
False
.
- Raises
TypeError – If top is not of type int.
ValueError – If top is negative.
TypeError – If left is not of type int.
ValueError – If left is negative.
TypeError – If height is not of type int.
ValueError – If height is not positive.
TypeError – If width is not of type int.
ValueError – If width is not positive.
TypeError – If value is not of type int or Sequence[int, int, int].
ValueError – If value is not in range of [0, 255].
TypeError – If inplace is not of type bool.
RuntimeError – If shape of the input image is not <H, W, C>.
- Supported Platforms:
CPU
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transforms_list = [vision.Erase(10,10,10,10)] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.array([[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]], dtype=np.uint8).reshape((2, 2, 3)) >>> output = vision.Erase(0, 0, 2, 1)(data) >>> print(output.shape, output.dtype) (2, 2, 3) uint8
- Tutorial Examples: