mindspore.dataset.vision.Perspective
- class mindspore.dataset.vision.Perspective(start_points, end_points, interpolation=Inter.BILINEAR)[source]
Apply perspective transformation on input image.
- Parameters
start_points (Sequence[Sequence[int, int]]) – Sequence of the starting point coordinates, containing four two-element subsequences, corresponding to [top-left, top-right, bottom-right, bottom-left] of the quadrilateral in the original image.
end_points (Sequence[Sequence[int, int]]) – Sequence of the ending point coordinates, containing four two-element subsequences, corresponding to [top-left, top-right, bottom-right, bottom-left] of the quadrilateral in the target image.
interpolation (Inter, optional) – Image interpolation method defined by
Inter
. Default:Inter.BILINEAR
.
- Raises
TypeError – If start_points is not of type Sequence[Sequence[int, int]].
TypeError – If end_points is not of type Sequence[Sequence[int, int]].
RuntimeError – If shape of the input image is not <H, W> or <H, W, C>.
- Supported Platforms:
CPU
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.vision import Inter >>> >>> # Use the transform in dataset pipeline mode >>> start_points = [[0, 63], [63, 63], [63, 0], [0, 0]] >>> end_points = [[0, 32], [32, 32], [32, 0], [0, 0]] >>> transforms_list = [vision.Perspective(start_points, end_points, Inter.BILINEAR)] >>> # apply the transform to dataset through map function >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns="image") >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> start_points = [[0, 63], [63, 63], [63, 0], [0, 0]] >>> end_points = [[0, 32], [32, 32], [32, 0], [0, 0]] >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.Perspective(start_points, end_points, Inter.BILINEAR)(data) >>> print(output.shape, output.dtype) (100, 100, 3) uint8
- Tutorial Examples:
- device(device_target='CPU')[source]
Set the device for the current operator execution.
When the device is Ascend, input shape should be limited from [6, 10] to [8192, 4096].
- Parameters
device_target (str, optional) – The operator will be executed on this device. Currently supports
CPU
andAscend
. Default:CPU
.- Raises
TypeError – If device_target is not of type str.
ValueError – If device_target is not within the valid set of [‘CPU’, ‘Ascend’].
- Supported Platforms:
CPU
Ascend
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.vision import Inter >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> start_points = [[0, 63], [63, 63], [63, 0], [0, 0]] >>> end_points = [[0, 32], [32, 32], [32, 0], [0, 0]] >>> perspective_op = vision.Perspective(start_points, end_points).device("Ascend") >>> transforms_list = [perspective_op] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> start_points = [[0, 63], [63, 63], [63, 0], [0, 0]] >>> end_points = [[0, 32], [32, 32], [32, 0], [0, 0]] >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.Perspective(start_points, end_points, Inter.BILINEAR).device("Ascend")(data) >>> print(output.shape, output.dtype) (100, 100, 3) uint8
- Tutorial Examples: