mindspore.dataset.vision.AdjustHue

class mindspore.dataset.vision.AdjustHue(hue_factor)[source]

Adjust the hue of the input image.

Supports Ascend hardware acceleration and can be enabled through the .device(“Ascend”) method.

Parameters

hue_factor (float) – How much to add to the hue channel, must be in range of [-0.5, 0.5].

Raises
  • TypeError – If hue_factor is not of type float.

  • ValueError – If hue_factor is not in the interval [-0.5, 0.5].

  • RuntimeError – If shape of the input image is not <H, W, C>.

Supported Platforms:

CPU Ascend

Examples

>>> import numpy as np
>>> import mindspore.dataset as ds
>>> import mindspore.dataset.vision as vision
>>>
>>> # Use the transform in dataset pipeline mode
>>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8)
>>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"])
>>> transforms_list = [vision.AdjustHue(hue_factor=0.2)]
>>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"])
>>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
...     print(item["image"].shape, item["image"].dtype)
...     break
(100, 100, 3) uint8
>>>
>>> # Use the transform in eager mode
>>> data = np.array([[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]], dtype=np.uint8).reshape((2, 2, 3))
>>> output = vision.AdjustHue(hue_factor=0.2)(data)
>>> print(output.shape, output.dtype)
(2, 2, 3) uint8
Tutorial Examples:
device(device_target='CPU')[source]

Set the device for the current operator execution.

  • When the device is Ascend, input shape should be limited from [4, 6] to [8192, 4096].

Parameters

device_target (str, optional) – The operator will be executed on this device. Currently supports CPU and Ascend . Default: CPU .

Raises
  • TypeError – If device_target is not of type str.

  • ValueError – If device_target is not within the valid set of [‘CPU’, ‘Ascend’].

Supported Platforms:

CPU Ascend

Examples

>>> import numpy as np
>>> import mindspore.dataset as ds
>>> import mindspore.dataset.vision as vision
>>>
>>> # Use the transform in dataset pipeline mode
>>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8)
>>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"])
>>> transforms_list = [vision.AdjustHue(0.5).device("Ascend")]
>>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"])
>>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
...     print(item["image"].shape, item["image"].dtype)
...     break
(100, 100, 3) uint8
>>>
>>> # Use the transform in eager mode
>>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8)
>>> output = vision.AdjustHue(hue_factor=0.2).device("Ascend")(data)
>>> print(output.shape, output.dtype)
(100, 100, 3) uint8
Tutorial Examples: