mindspore.mint.nn.functional.silu
- mindspore.mint.nn.functional.silu(input)[source]
Computes Sigmoid Linear Unit of input element-wise. The SiLU function is defined as:
\[\text{SiLU}(x) = x * \sigma(x),\]where \(x\) is an element of the input, \(\sigma(x)\) is Sigmoid function.
\[\text{sigma}(x_i) = \frac{1}{1 + \exp(-x_i)},\]SiLU Function Graph:
- Parameters
input (Tensor) – input is \(x\) in the preceding formula. Input with the data type float16 or float32.
- Returns
Tensor, with the same type and shape as the input.
- Raises
TypeError – If dtype of input is neither float16 nor float32.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> from mindspore import Tensor, mint >>> import numpy as np >>> input = Tensor(np.array([-1, 2, -3, 2, -1]), mindspore.float16) >>> output = mint.nn.functional.silu(input) >>> print(output) [-0.269 1.762 -0.1423 1.762 -0.269]