mindspore.mint.nn.functional.sigmoid
- mindspore.mint.nn.functional.sigmoid(input)[source]
Computes Sigmoid of input element-wise. The Sigmoid function is defined as:
\[\text{sigmoid}(x_i) = \frac{1}{1 + \exp(-x_i)}\]where \(x_i\) is an element of x.
Sigmoid Function Graph:
- Parameters
input (Tensor) – input is \(x\) in the preceding formula. Tensor of any dimension, the data type is float16, float32, float64, complex64 or complex128.
- Returns
Tensor, with the same type and shape as the input.
- Raises
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, mint >>> input = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) >>> output = mint.nn.functional.sigmoid(input) >>> print(output) [0.7310586 0.880797 0.95257413 0.98201376 0.9933072 ]