Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.nn.Transformer

class mindspore.nn.Transformer(d_model: int = 512, nhead: int = 8, num_encoder_layers: int = 6, num_decoder_layers: int = 6, dim_feedforward: int = 2048, dropout: float = 0.1, activation: Union[str, Cell, callable] = 'relu', custom_encoder: Optional[Cell] = None, custom_decoder: Optional[Cell] = None, layer_norm_eps: float = 1e-05, batch_first: bool = False, norm_first: bool = False)[source]

Transformer module including encoder and decoder. The difference with the original implements is the module use the residual addition before the layer normalization. And the default hidden act is gelu. The details can be found in Attention is all you need.

Warning

This is an experimental API that is subject to change or deletion.

Parameters
  • d_model (int) – The number of expected features in the inputs tensor. Default: 512.

  • nhead (int) – The number of heads in the MultiheadAttention modules. Default: 8.

  • num_encoder_layers (int) – The number of encoder-layers in the encoder. Default: 6.

  • num_decoder_layers (int) – The number of decoder-layers in the decoder. Default: 6.

  • dim_feedforward (int) – The dimension of the feedforward layer. Default: 2048.

  • dropout (float) – The dropout value. Default: 0.1.

  • activation (Union[str, callable, Cell]) – The activation function of the intermediate layer, can be a string (“relu” or “gelu”), Cell instance (nn.ReLU() or nn.GELU()) or a callable (ops.relu or ops.gelu). Default: "relu"

  • custom_encoder (Cell) – Custom encoder. Default: None.

  • custom_decoder (Cell) – Custom decoder. Default: None.

  • layer_norm_eps (float) – the epsilion value in layer normalization module. Default: 1e-5.

  • batch_first (bool) – If batch_first = True, then the shape of input and output tensors is (batch,seq,feature) , otherwise the shape is (seq,batch,feature) . Default: False.

  • norm_first (bool) – If norm_first = True, layer norm is done prior to attention and feedforward operations, respectively. Default: False.

Inputs:
  • src (Tensor): The source sequence to the encoder.

  • tgt (Tensor): The target sequence to the decoder.

  • src_mask (Tensor, optional): The mask of the src sequence. Default: None.

  • tgt_mask (Tensor, optional): The mask of the tgt sequence. Default: None.

  • memory_mask (Tensor, optional): The additive mask of the encoder output. Default: None.

  • src_key_padding_mask (Tensor, optional): The mask of src keys per batch. Default: None.

  • tgt_key_padding_mask (Tensor, optional): The mask of tgt keys per batch. Default: None.

  • memory_key_padding_mask (Tensor, optional): The mask of memory keys per batch. Default: None.

Outputs:

Tensor.

Raises
  • ValueError – If the batch sizes of the init argument src and tgt are not equal.

  • ValueError – If the number of features of the init argument src and tgt is not equal to that of d_model.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore as ms
>>> import numpy as np
>>> transformer_model = ms.nn.Transformer(nhead=16, num_encoder_layers=12)
>>> src = ms.Tensor(np.random.rand(10, 32, 512), ms.float32)
>>> tgt = ms.Tensor(np.random.rand(20, 32, 512), ms.float32)
>>> out = transformer_model(src, tgt)
>>> print(out.shape)
(20, 32, 512)