mindspore.dataset.vision.ResizeWithBBox
- class mindspore.dataset.vision.ResizeWithBBox(size, interpolation=Inter.LINEAR)[source]
Resize the input image to the given size and adjust bounding boxes accordingly.
- Parameters
size (Union[int, Sequence[int]]) – The output size of the resized image. If size is an integer, smaller edge of the image will be resized to this value with the same image aspect ratio. If size is a sequence of length 2, it should be (height, width).
interpolation (Inter, optional) –
Image interpolation mode. Default:
Inter.LINEAR
. It can beInter.LINEAR
,Inter.NEAREST
,Inter.BICUBIC
.Inter.LINEAR
, means interpolation method is bilinear interpolation.Inter.NEAREST
, means interpolation method is nearest-neighbor interpolation.Inter.BICUBIC
, means interpolation method is bicubic interpolation.
- Raises
TypeError – If size is not of type int or Sequence[int].
TypeError – If interpolation is not of type
mindspore.dataset.vision.Inter
.ValueError – If size is not positive.
RuntimeError – If given tensor shape is not <H, W> or <H, W, C>.
- Supported Platforms:
CPU
Examples
>>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.vision import Inter >>> >>> decode_op = vision.Decode() >>> bbox_op = vision.ResizeWithBBox(50, Inter.NEAREST) >>> transforms_list = [decode_op, bbox_op] >>> image_folder_dataset = ds.ImageFolderDataset("/path/to/image_folder_dataset_directory") >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns=["image"])
- Tutorial Examples: