mindspore.dataset.vision.GaussianBlur
- class mindspore.dataset.vision.GaussianBlur(kernel_size, sigma=None)[source]
Blur input image with the specified Gaussian kernel.
- Parameters
kernel_size (Union[int, Sequence[int]]) – Size of the Gaussian kernel to use. The value must be positive and odd. If only an integer is provided, the kernel size will be (kernel_size, kernel_size). If a sequence of integer is provided, it must be a sequence of 2 values which represents (width, height).
sigma (Union[float, Sequence[float]], optional) – Standard deviation of the Gaussian kernel to use. Default:
None
. The value must be positive. If only a float is provided, the sigma will be (sigma, sigma). If a sequence of float is provided, it must be a sequence of 2 values which represents (width, height). IfNone
is provided, the sigma will be calculated as ((kernel_size - 1) * 0.5 - 1) * 0.3 + 0.8.
- Raises
TypeError – If kernel_size is not of type int or Sequence[int].
TypeError – If sigma is not of type float or Sequence[float].
ValueError – If kernel_size is not positive and odd.
ValueError – If sigma is not positive.
RuntimeError – If given tensor shape is not <H, W> or <H, W, C>.
- Supported Platforms:
CPU
Examples
>>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> image_folder_dataset = ds.ImageFolderDataset("/path/to/image_folder_dataset_directory") >>> transforms_list = [vision.Decode(to_pil=True), vision.GaussianBlur(3, 3)] >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns=["image"])
- Tutorial Examples: