mindspore.dataset.vision.RandomPerspective
- class mindspore.dataset.vision.RandomPerspective(distortion_scale=0.5, prob=0.5, interpolation=Inter.BICUBIC)[source]
Randomly apply perspective transformation to the input PIL Image with a given probability.
- Parameters
distortion_scale (float, optional) – Scale of distortion, in range of [0.0, 1.0]. Default:
0.5
.prob (float, optional) – Probability of performing perspective transformation, which must be in range of [0.0, 1.0]. Default:
0.5
.interpolation (Inter, optional) –
Method of interpolation. It can be
Inter.BILINEAR
,Inter.NEAREST
orInter.BICUBIC
. Default:Inter.BICUBIC
.Inter.BILINEA
, bilinear interpolation.Inter.NEAREST
, nearest-neighbor interpolation.Inter.BICUBIC
, bicubic interpolation.
- Raises
TypeError – If distortion_scale is not of type float.
TypeError – If prob is not of type float.
TypeError – If interpolation is not of type
mindspore.dataset.vision.Inter
.ValueError – If distortion_scale is not in range of [0.0, 1.0].
ValueError – If prob is not in range of [0.0, 1.0].
- Supported Platforms:
CPU
Examples
>>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.transforms import Compose >>> >>> transforms_list = Compose([vision.Decode(to_pil=True), ... vision.RandomPerspective(prob=0.1), ... vision.ToTensor()]) >>> # apply the transform to dataset through map function >>> image_folder_dataset = ds.ImageFolderDataset("/path/to/image_folder_dataset_directory") >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, ... input_columns="image")
- Tutorial Examples: