mindspore.dataset.vision.RandomResizeWithBBox
- class mindspore.dataset.vision.RandomResizeWithBBox(size)[source]
Tensor operation to resize the input image using a randomly selected interpolation mode
mindspore.dataset.vision.Inter
and adjust bounding boxes accordingly.- Parameters
size (Union[int, Sequence[int]]) – The output size of the resized image. The size value(s) must be positive. If size is an integer, smaller edge of the image will be resized to this value with the same image aspect ratio. If size is a sequence of length 2, it should be (height, width).
- Raises
TypeError – If size is not of type int or Sequence[int].
ValueError – If size is not positive.
RuntimeError – If given tensor shape is not <H, W> or <H, W, C>.
- Supported Platforms:
CPU
Examples
>>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> image_folder_dataset = ds.ImageFolderDataset("/path/to/image_folder_dataset_directory") >>> >>> # 1) randomly resize image with bounding boxes, keeping aspect ratio >>> transforms_list1 = [vision.Decode(), vision.RandomResizeWithBBox(60)] >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list1, ... input_columns=["image"]) >>> >>> # 2) randomly resize image with bounding boxes to portrait style >>> transforms_list2 = [vision.Decode(), vision.RandomResizeWithBBox((80, 60))] >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list2, ... input_columns=["image"])
- Tutorial Examples: