Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.nn.probability.bijector.GumbelCDF

class mindspore.nn.probability.bijector.GumbelCDF(loc=0.0, scale=1.0, name='GumbelCDF')[source]

GumbelCDF Bijector. This Bijector performs the operation:

Y=exp(exp((Xloc)scale))
Parameters

Note

scale must be greater than zero. For inverse and inverse_log_jacobian, input should be in range of (0, 1). The dtype of loc and scale must be float. If loc, scale are passed in as numpy.ndarray or tensor, they have to have the same dtype otherwise an error will be raised.

Raises

TypeError – When the dtype of loc or scale is not float, or when the dtype of loc and scale is not same.

Supported Platforms:

Ascend GPU

Examples

>>> import mindspore
>>> import mindspore.nn as nn
>>> import mindspore.nn.probability.bijector as msb
>>> from mindspore import Tensor
>>>
>>> # To initialize a GumbelCDF bijector of loc 1.0, and scale 2.0.
>>> gumbel_cdf = msb.GumbelCDF(1.0, 2.0)
>>> # To use a GumbelCDF bijector in a network.
>>> x = Tensor([1, 2, 3], dtype=mindspore.float32)
>>> y = Tensor([0.1, 0.2, 0.3], dtype=mindspore.float32)
>>> ans1 = gumbel_cdf.forward(x)
>>> print(ans1.shape)
(3,)
>>> ans2 = gumbel_cdf.inverse(y)
>>> print(ans2.shape)
(3,)
>>> ans3 = gumbel_cdf.forward_log_jacobian(x)
>>> print(ans3.shape)
(3,)
>>> ans4 = gumbel_cdf.inverse_log_jacobian(y)
>>> print(ans4.shape)
(3,)
property loc

Return the loc parameter of the bijector.

Returns

Tensor, the loc parameter of the bijector.

property scale

Return the scale parameter of the bijector.

Returns

Tensor, the scale parameter of the bijector.

forward(value)

forward mapping, compute the value after mapping.

Parameters
  • value (Tensor) - the value to compute.

Returns

Tensor, the value to compute.

forward_log_jacobian(value)

compute the log value after mapping.

Parameters
  • value (Tensor) - the value to compute.

Returns

Tensor, the log value of forward mapping.

inverse(value)

Inverse mapping, compute the value after inverse mapping.

Parameters
  • value (Tensor) - the value of output after mapping.

Returns

Tensor, the value of output after mapping.

inverse_log_jacobian(value)

Compute the log value of the inverse mapping.

Parameters
  • value (Tensor) - the value of output after mapping.

Returns

Tensor, the log value of the inverse mapping.