Static Graph Syntax Support
Overview
In graph mode, Python code is not executed by the Python interpreter. Instead, the code is compiled into a static computation graph, and then the static computation graph is executed.
There are two ways to use the graph mode. The first way is to call the @jit
decorator to modify a function or a class member method, and then the decorated function or method will be compiled into a static computation graph. The second way is to set ms.set_context(mode=ms.GRAPH_MODE)
, then write the code in the construct
function of the Cell
so that the code in the construct
function will be compiled into a static computation graph.
For details about how to use jit
, click jit API document.
For details about the definition of Cell
, click Cell API document.
Due to syntax parsing restrictions, the supported data types, syntax, and related operations during graph building are not completely consistent with the Python syntax. As a result, some usage is restricted.
The following describes the data types, syntax, and related operations supported during static graph building. These rules apply only to graph mode.
Data Types
Built-in Python Data Types
Currently, the following built-in Python
data types are supported: Number
, String
, List
, Tuple
, and Dictionary
.
Number
Supports int
, float
, and bool
, but does not support complex numbers.
Number
can be defined on the network. That is, the syntax y = 1
, y = 1.2
, and y = True
are supported.
When the data is constant, the value of the data can be achieved at compile time, the forcible conversion to Number
is supported in the network. That is, the syntax y = int(x)
, y = float(x)
, and y = bool(x)
are supported.
String
String
can be constructed on the network. That is, the syntax y = "abcd"
is supported.
Use str() to change the constant value to string, str.format() can use to format the string, but not supported to input a kwargs type arguments and the argument of format function cannot be a variable.
For example:
import mindspore as ms
@ms.jit()
def test_str_format():
x = "{} is zero".format(0)
return x
x = test_str_format()
print(x)
The result is as follows:
0 is zero
List
List
can be constructed on the network, that is, the syntax y = [1, 2, 3]
is supported.
For example:
Python:
>>> a = [[1,2,3],4,5]
>>> b = a[0]
>>> b[0] = 123123
>>> a
[[123123, 2, 3], 4, 5]
MindSpore:
import mindspore as ms
@ms.jit
def test_list():
a = [[1,2,3],4,5]
b = a[0]
b[0] = 123123
return a
a = test_list()
print('a:{}'.format(a))
The result is as follows:
a:[[1, 2, 3], 4, 5]
Supported APIs
append
: adds an element tolist
.For example:
import mindspore as ms @ms.jit() def test_list(): x = [1, 2, 3] x.append(4) return x x = test_list() print('x:{}'.format(x))
The result is as follows:
x:[1, 2, 3, 4]
insert
: inserts the specified element at the specified position in thelist
.For example:
import mindspore as ms @ms.jit() def test_list_insert(): x = [1, 3, 4] x.insert(0, 2) return x x = test_list_insert() print('x:{}'.format(x))
The result is as follows:
x:[2, 1, 3, 4]
pop
: removes the element at the specified position inlist
, removing the last one by default.For example:
import mindspore as ms @ms.jit() def test_list_pop(): x = [1, 3, 4] y = x.pop() return x, y x, y = test_list_pop() print('x:{}'.format(x)) print('y:', y)
The result is as follows:
x:[1, 3] y: 4
clear
: clears the elements inlist
.For example:
import mindspore as ms @ms.jit() def test_list_clear(): x = [1, 3, 4] x.clear() return x x = test_list_clear() print('x:{}'.format(x))
The result is as follows:
x:[]
extend
: appends multiple elements of another sequence to the end oflist
.For example:
import mindspore as ms @ms.jit() def test_list_extend(): x = [1, 2, 3, 4] y = [5, 6, 7] x.extend(y) return x x = test_list_extend() print('x:{}'.format(x))
The result is as follows:
x:[1, 2, 3, 4, 5, 6, 7]
reverse
: reverses the elements oflist
.For example:
import mindspore as ms @ms.jit() def test_list_reverse(): x = [1, 2, 3, 4] x.reverse() return x x = test_list_reverse() print('x:{}'.format(x))
The result is as follows:
x:[4, 3, 2, 1]
count
: counts the number of occurrences of an element inlist
.For example:
import mindspore as ms @ms.jit() def test_list_count(): x = [1, 2, 3, 4] num = x.count(2) return num num = test_list_count() print('num:', num)
The result is as follows:
num: 1
The framework provides a SequenceCount operator to support count Tensor variable scenarios in the List.
For example:
import mindspore as ms @ms.jit() def test_list_count(input_x): x = [1, 2, 3, 4] num = x.count(input_x) return num input_x = ms.Tensor(2) num = test_list_count(input_x) print('num:', num)
The result is as follows:
num:1
Supported index values and value assignment
Single-level and multi-level index values and value assignment are supported.
The index value supports only
int
andslice
.The element of
slice
data should be constant that can be deduced in the state of compiling graph.The assigned value can be
Number
,String
,Tuple
,List
, orTensor
.When the value of the current slice is
Tensor
, theTensor
needs to be converted to aList
, which is currently implemented through JIT Fallback. Therefore, variable scenarios cannot be supported temporarily.For example:
import mindspore as ms import numpy as np t = ms.Tensor(np.array([1, 2, 3])) @ms.jit() def test_index(): x = [[1, 2], 2, 3, 4] m = x[0][1] z = x[1::2] x[1] = t x[2] = "ok" x[3] = (1, 2, 3) x[0][1] = 88 n = x[-3] return m, z, x, n m, z, x, n = test_index() print('m:{}'.format(m)) print('z:{}'.format(z)) print('x:{}'.format(x)) print('n:{}'.format(n))
The result is as follows:
m:2 z:[2, 4] x:[[1, 88], Tensor(shape=[3], dtype=Int64, value= [1, 2, 3]), 'ok', (1, 2, 3)] n:[1 2 3]
Tuple
Tuple
can be constructed on the network, that is, the syntax y = (1, 2, 3)
is supported.
The reference type of tuple is same as List, please refer to List.
Supported index values
The index value can be
int
,slice
,Tensor
, and multi-level index value. That is, the syntaxdata = tuple_x[index0][index1]...
is supported.Restrictions on the index value
Tensor
are as follows:Tuple
storesCell
. EachCell
must be defined before a tuple is defined. The number of input parameters, input parameter type, and input parametershape
of eachCell
must be the same. The number of outputs of eachCell
must be the same. The output type must be the same as the output shape.The index
Tensor
is a scalarTensor
whosedtype
isint32
. The value range is[-tuple_len, tuple_len)
, negative index is not supported inAscend
backend.This syntax does not support the running branches whose control flow conditions
if
,while
, andfor
are variables. The control flow conditions can be constants only.GPU
andAscend
backend is supported.
An example of the
int
andslice
indexes is as follows:import mindspore as ms import numpy as np t = ms.Tensor(np.array([1, 2, 3])) @ms.jit() def test_index(): x = (1, (2, 3, 4), 3, 4, t) y = x[1][1] z = x[4] m = x[1:4] n = x[-4] return y, z, m, n y, z, m, n = test_index() print('y:{}'.format(y)) print('z:{}'.format(z)) print('m:{}'.format(m)) print('n:{}'.format(n))
The result is as follows:
y:3 z:[1 2 3] m:((2, 3, 4), 3, 4) n:(2, 3, 4)
An example of the
Tensor
index is as follows:import mindspore as ms from mindspore import nn, set_context set_context(mode=ms.GRAPH_MODE) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.relu = nn.ReLU() self.softmax = nn.Softmax() self.layers = (self.relu, self.softmax) def construct(self, x, index): ret = self.layers[index](x) return ret x = ms.Tensor([-1.0], ms.float32) net = Net() ret = net(x, 0) print('ret:{}'.format(ret))
The result is as follows:
ret:[0.]
Dictionary
Dictionary
can be constructed on the network. That is, the syntax y = {"a": 1, "b": 2}
is supported.
Currently, the key
can be String
, Number
, constant Tensor
, or Tuple
that contains these types. The value
can be Number
, Tuple
, Tensor
, List
or Dictionary
.
Supported APIs
keys
: extracts allkey
values fromdict
to formTuple
and return it.values
: extracts allvalue
values fromdict
to formTuple
and return it.items
: extractsTuple
composed of each pair ofvalue
values andkey
values indict
to formList
and return it.get
:dict.get(key[, value])
returns thevalue
value corresponding to the specifiedkey
, if the specifiedkey
does not exist, the default valueNone
or the set default valuevalue
is returned .clear
: removes all elements indict
.has_key
:dict.has_key(key)
determines whether the specifiedkey
exists indict
.update
:dict1.update(dict2)
updates the elements indict2
todict1
.fromkeys
:dict.fromkeys(seq([, value]))
is used to create a newDictionary
, using the elements in the sequenceseq
as thekey
of theDictionary
, and thevalue
is initial value corresponding to allkey
.For example:
import mindspore as ms import numpy as np x = {"a": ms.Tensor(np.array([1, 2, 3])), "b": ms.Tensor(np.array([4, 5, 6])), "c": ms.Tensor(np.array([7, 8, 9]))} @ms.jit() def test_dict(): x_keys = x.keys() x_values = x.values() x_items = x.items() value_a = x.get("a") check_key = x.has_key("a") y = {"a": ms.Tensor(np.array([0, 0, 0]))} x.update(y) new_dict = x.fromkeys("abcd", 123) return x_keys, x_values, x_items, value_a, check_key, x, new_dict x_keys, x_values, x_items, value_a, check_key, new_x, new_dict = test_dict() print('x_keys:{}'.format(x_keys)) print('x_values:{}'.format(x_values)) print('x_items:{}'.format(x_items)) print('value_a:{}'.format(value_a)) print('check_key:{}'.format(check_key)) print('new_x:{}'.format(new_x)) print('new_dict:{}'.format(new_dict))
The result is as follows:
x_keys:('a', 'b', 'c') x_values:(Tensor(shape=[3], dtype=Int64, value= [1, 2, 3]), Tensor(shape=[3], dtype=Int64, value= [4, 5, 6]), Tensor(shape=[3], dtype=Int64, value= [7, 8, 9])) x_items:[('a', Tensor(shape=[3], dtype=Int64, value= [1, 2, 3])), ('b', Tensor(shape=[3], dtype=Int64, value= [4, 5, 6])), ('c', Tensor(shape=[3], dtype=Int64, value= [7, 8, 9]))] value_a:[1 2 3] check_key:True new_x:{'a': Tensor(shape=[3], dtype=Int64, value= [0, 0, 0]), 'b': Tensor(shape=[3], dtype=Int64, value= [4, 5, 6]), 'c': Tensor(shape=[3], dtype=Int64, value= [7, 8, 9])} new_dict:{'a': 123, 'b': 123, 'c': 123, 'd': 123}
Supported index values and value assignment
For example:
import mindspore as ms import numpy as np x = {"a": ms.Tensor(np.array([1, 2, 3])), "b": ms.Tensor(np.array([4, 5, 6])), "c": ms.Tensor(np.array([7, 8, 9]))} @ms.jit() def test_dict(): y = x["b"] x["a"] = (2, 3, 4) return x, y out1, out2 = test_dict() print('out1:{}'.format(out1)) print('out2:{}'.format(out2))
The result is as follows:
out1:{'a': (2, 3, 4), 'b': Tensor(shape=[3], dtype=Int64, value= [4, 5, 6]), 'c': Tensor(shape=[3], dtype=Int64, value= [7, 8, 9])} out2:[4 5 6]
Supported calculation graph return ‘Dictionary’
For example:
import mindspore as ms @ms.jit() def test_dict(): x = {'a': 'a', 'b': 'b'} y = x.get('a') z = dict(y=y) return z out = test_dict() print("out:", out)
The result is as follows:
out:{'y': 'a'}
MindSpore User-defined Data Types
Currently, MindSpore supports the following user-defined data types: Tensor
, Primitive
, and Cell
.
Tensor
Currently, tensors can be constructed in the network.
For details of Tensor
, click Tensor API document.
Primitive
Currently, Primitive
and its subclass instances can be constructed in construct.
However, during call, the parameter can be specified only in position parameter mode, and cannot be specified in the key-value pair mode.
For example:
import mindspore as ms
from mindspore import nn, ops, Tensor, set_context
import numpy as np
set_context(mode=ms.GRAPH_MODE)
class Net(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x):
reduce_sum = ops.ReduceSum(True) #`Primitive` and its subclass instances can be constructed in construct.
ret = reduce_sum(x, axis=2)
return ret
x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
net = Net()
ret = net(x)
print('ret.shape:{}'.format(ret.shape))
In the network defined above, the parameters of reduce_sum(x, axis=2) cannot be specified in the key-value pair mode. the parameter can be specified only in position parameter mode, that is, reduce_sum(x, 2).
The error is reported as follows:
TypeError: Only supported positional parameter type for python primitive, but got keyword parameter type.
Currently, the attributes and APIs related to Primitive
and its subclasses cannot be called on the network.
For details about the defined Primitive
, click Primitive API document.
Cell
Currently, Cell
and its subclass instances can be constructed on the network. That is, the syntax cell = Cell(args...)
is supported.
However, during call, the parameter can be specified only in position parameter mode, and cannot be specified in the key-value pair mode. That is, the syntax cell = Cell(arg_name=value)
is not supported.
Currently, the attributes and APIs related to Cell
and its subclasses cannot be called on the network unless they are called through self
in construct
of Cell
.
For details about the definition of Cell
, click Cell API document.
Parameter
Parameter
is a variable tensor, indicating the parameters that need to be updated during network training.
For details about the definition of Parameter
, click Parameter API document.
Primaries
Primaries represent the most tightly bound operations of the language Which contains Attribute references
, Subscriptions
, Calls
.
Attribute References
An attribute reference is a primary followed by a period and a name.
In Cell
instance of MindSpore, using attribute reference as left operands must meet the restrictions below:
The attribute must belong to self, such as self.xxx. It is not supported to change attribute of other instance.
The attribute type must be
Parameter
and be initialized in__init__
function.
For example:
import mindspore as ms
from mindspore import nn, set_context
set_context(mode=ms.GRAPH_MODE)
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.weight = ms.Parameter(ms.Tensor(3, ms.float32), name="w")
self.m = 2
def construct(self, x, y):
self.weight = x # restictions matched, success
# self.m = 3 # self.m not Parameter type, failure
# y.weight = x # not attribute of self, failure
return x
net = Net()
ret = net(1, 2)
print('ret:{}'.format(ret))
The result is as follows:
ret:1
Index Value
Index value of a sequence Tuple
, List
, Dictionary
, Tensor
which called subscription in Python.
Index value of Tuple
refers to chapter Tuple of this page.
Index value of List
refers to chapter List of this page.
Index value of Dictionary
refers to chapter Dictionary of this page.
Index value of Tensor
refers to Tensor index value document.
Calls
A call calls a callable object (e.g., Cell
or Primitive
) with a possibly empty series of arguments.
For example:
import mindspore as ms
from mindspore import nn, ops, set_context
import numpy as np
set_context(mode=ms.GRAPH_MODE)
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.matmul = ops.MatMul()
def construct(self, x, y):
out = self.matmul(x, y) # A call of Primitive
return out
x = ms.Tensor(np.ones(shape=[1, 3]), ms.float32)
y = ms.Tensor(np.ones(shape=[3, 4]), ms.float32)
net = Net()
ret = net(x, y)
print('ret:{}'.format(ret))
The result is as follows:
ret:[[3. 3. 3. 3.]]
Operators
Arithmetic operators and assignment operators support the Number
and Tensor
operations, as well as the Tensor
operations of different dtype
.
For details about the rules, click conversion-rules.
Unary Arithmetic Operators
Unary Arithmetic Operator |
Supported Type |
---|---|
|
|
|
|
|
|
notes:
In native python the
~
operator get the bitwise inversion of its integer argument; in Mindspore the~
redefined to get logic not forTensor(Bool)
.
Binary Arithmetic Operators
Binary Arithmetic Operator |
Supported Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Restrictions:
If all operands are
Number
type, operations betweenFloat64
andInt32
are not supported. Operators including+
,-
,*
,/
,%
,**
,//
all support left and right operands to beBool
value.If either operand is
Tensor
type, left and right operands can’t both beBool
value.The result of
List * Number
is concatenate duplicate List Number times, data type of theList
must beNumber
,String
,None
orList
/Tuple
that contains these types. This rule applies toNumber * List
,Tuple * Number
,Number * Tuple
too.
Assignment Operators
Assignment Operator |
Supported Type、 |
---|---|
|
All Built-in Python Types that MindSpore supported and MindSpore User-defined Data Types. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Notes:
For
=
the scenarios below are not allowed:Only instance of
Cell
andPrimitve
can be created in function construct, the statement likexx = Tensor(...)
is forbidden.Only
Parameter
attribute of self can be assigned, for more detail refer to Attribute Reference.If all operands of
AugAssign
areNumber
type, value of Number can’t beBool
.If all operands of
AugAssign
areNumber
type, operations betweenFloat64
andInt32
are not supported.If either operand of
AugAssign
isTensor
type, left and right operands can’t both beBool
value.The result of
List *= Number
is concatenate duplicate List Number times, data type of theList
must beNumber
,String
,None
orList
/Tuple
that contains these types. This rule applies toNumber * List
,Tuple * Number
,Number * Tuple
too.
Logical Operators
Logical Operator |
Supported Type |
---|---|
|
|
|
|
|
|
Restrictions:
The left operand of operator
and
,or
must be able to be converted to boolean value. For example, left operand can not be Tensor with multiple elements. If the left operand ofand
,or
is variableTensor
, the right operand must also be single-elementTensor
with the same type. Otherwise, there is no requirement for right operand.If the left or right operand of
and
,or
is object that the graph mode does not support (such as third-party object and object created by syntax that is not native-supported in the graph mode), both operands need to be constant.
Compare Operators
Compare Operator |
Supported Type |
---|---|
|
|
|
Same as |
|
The value can only be |
|
The value can only be |
< |
|
<= |
|
> |
|
>= |
|
!= |
|
== |
|
Restrictions:
For operators
<
,<=
,>
,>=
,!=
, if all operators areNumber
type, value of Number can’t beBool
.For operators
<
,<=
,>
,>=
,!=
,==
, if all operands areNumber
type, operations betweenFloat64
andInt32
are not supported.For operators
<
,<=
,>
,>=
,!=
,==
, if either operand isTensor
type, left and right operands can’t both beBool
value.For operator
==
, if all operands areNumber
type, support bothNumber
haveBool
value, not support only oneNumber
hasBool
value.For operators
!=
,==
, all supported types butmstype
can compare withNone
.The chain comparison like:
a>b>c
is not supported.
Compound Statements
Conditional Control Statements
if Statements
Usage:
if (cond): statements...
x = y if (cond) else z
Parameter: cond
– Variables of Bool
type and constants of Bool
, List
, Tuple
, Dict
and String
types are supported.
Restrictions:
If
cond
is not a constant, the variable or constant assigned to a same sign in different branches should have same data type. If the data type of assigned variables or constants isTensor
, the variables and constants should have same shape and element type. For shape consistency restrictions, please refer to ShapeJoin Rules.
Example 1:
import mindspore as ms
x = ms.Tensor([1, 4], ms.int32)
y = ms.Tensor([0, 3], ms.int32)
m = 1
n = 2
@ms.jit()
def test_cond(x, y):
if (x > y).any():
return m
else:
return n
ret = test_cond(x, y)
print('ret:{}'.format(ret))
The data type of m
returned by the if
branch and n
returned by the else
branch must be same.
The result is as follows:
ret:1
Example 2:
import mindspore as ms
x = ms.Tensor([1, 4], ms.int32)
y = ms.Tensor([0, 3], ms.int32)
m = 1
n = 2
@ms.jit()
def test_cond(x, y):
out = 3
if (x > y).any():
out = m
else:
out = n
return out
ret = test_cond(x, y)
print('ret:{}'.format(ret))
The variable or constant m
assigned to out
in if
branch and the variable or constant n
assigned to out in false
branch must have same data type.
The result is as follows:
ret:1
Example 3:
import mindspore as ms
x = ms.Tensor([1, 4], ms.int32)
y = ms.Tensor([0, 3], ms.int32)
m = 1
@ms.jit()
def test_cond(x, y):
out = 2
if (x > y).any():
out = m
return out
ret = test_cond(x, y)
print('ret:{}'.format(ret))
The variable or constant m
assigned to out
in if
branch and the variable or constant init
initially assigned to out
must have same data type.
The result is as follows:
ret:1
Loop Statements
for Statements
Usage:
for i in sequence statements...
for i in sequence statements... if (cond) break
for i in sequence statements... if (cond) continue
Parameter: sequence
– Iterative sequences (Tuple
, List
, range
and so on).
Restrictions:
The total number of graph operations is a multiple of number of iterations of the
for
loop. Excessive number of iterations of thefor
loop may cause the graph to occupy more memory than usage limit.The
for...else...
statement is not supported.
Example:
import mindspore as ms
import numpy as np
z = ms.Tensor(np.ones((2, 3)))
@ms.jit()
def test_cond():
x = (1, 2, 3)
for i in x:
z += i
return z
ret = test_cond()
print('ret:{}'.format(ret))
The result is as follows:
ret:[[7. 7. 7.]
[7. 7. 7.]]
while Statements
Usage:
while (cond) statements...
while (cond) statements... if (cond1) break
while (cond) statements... if (cond1) continue
Parameter: cond
– Variables of Bool
type and constants of Bool
, List
, Tuple
, Dict
and String
types are supported.
Restrictions:
If
cond
is not a constant, the variable or constant assigned to a same sign inside body ofwhile
and outside body ofwhile
should have same data type.If the data type of assigned variables or constants isTensor
, the variables and constants should have same shape and element type. For shape consistency restrictions, please refer to ShapeJoin Rules.The
while...else...
statement is not supported.If
cond
is not a constant, in while body, the data with type ofNumber
,List
,Tuple
are not allowed to update and the shape ofTensor
data are not allowed to change.
Example 1:
import mindspore as ms
m = 1
n = 2
@ms.jit()
def test_cond(x, y):
while x < y:
x += 1
return m
return n
ret = test_cond(1, 5)
print('ret:{}'.format(ret))
The data type of m
returned inside while
and data type of n
returned outside while
must have same data type.
The result is as follows:
ret:1
Example 2:
import mindspore as ms
m = 1
n = 2
def ops1(a, b):
return a + b
@ms.jit()
def test_cond(x, y):
out = m
while x < y:
x += 1
out = ops1(out, x)
return out
ret = test_cond(1, 5)
print('ret:{}'.format(ret))
The variable op1
assigned to out
inside while
and the variable or constant init
initially assigned to out
must have same data type.
The result is as follows:
ret:15
Function Definition Statements
def Keyword
Defines functions.
Usage:
def function_name(args): statements...
For example:
import mindspore as ms
def number_add(x, y):
return x + y
@ms.jit()
def test(x, y):
return number_add(x, y)
ret = test(1, 5)
print('ret:{}'.format(ret))
The result is as follows:
ret:6
Instructions:
The defined function supported has no
return
statement. That means the return value of default functions is None.Construct
function of the outermost network and the inner network function is support kwargs, like:def construct(**kwargs):
.Mixed use of variable argument and non-variable argument is supported, like:
def function(x, y, *args)
anddef function(x = 1, y = 1, **kwargs)
.
lambda Expression
Generates functions.
Usage: lambda x, y: x + y
For example:
import mindspore as ms
@ms.jit()
def test(x, y):
number_add = lambda x, y: x + y
return number_add(x, y)
ret = test(1, 5)
print('ret:{}'.format(ret))
The result is as follows:
ret:6
List Comprehension and Generator Expression
Support List Comprehension and Generator Expression.
List Comprehension
Generates a list.
Usage: refer to Python official syntax description.
For example:
import mindspore as ms
@ms.jit()
def test(x, y):
l = [x * x for x in range(1, 11) if x % 2 == 0]
return l
ret = test(1, 5)
print('ret:{}'.format(ret))
The result is as follows:
ret:[4, 16, 36, 64, 100]
Restrictions:
Use multiple nested iterations comprehension in the generator.
For example (Use two nested iterations):
l = [y for x in ((1, 2), (3, 4), (5, 6)) for y in x]
The result would be:
TypeError: The `generators` supports one `comprehension` in ListComp/GeneratorExp, but got 2 comprehensions.
Generator Expression
Generates a list.
Usage: Referencing List Comprehension.
For example:
import mindspore as ms
@ms.jit()
def test(x, y):
l = (x * x for x in range(1, 11) if x % 2 == 0)
return l
ret = test(1, 5)
print('ret:{}'.format(ret))
The result is as follows:
ret:[4, 16, 36, 64, 100]
Restrictions: The same as List Comprehension.
With Statement
In graph mode, the with statement is supported with limitations. The with statement requires that the object must have two magic methods: __enter__()
and __exit__()
.
For example:
import mindspore as ms
import mindspore.nn as nn
from mindspore import set_context
set_context(mode=ms.GRAPH_MODE)
@ms.jit_class
class Sample:
def __init__(self):
super(Sample, self).__init__()
self.num = ms.Tensor([2])
def __enter__(self):
return self.num * 2
def __exit__(self, exc_type, exc_value, traceback):
return self.num * 4
class TestNet(nn.Cell):
def construct(self):
res = 1
obj = Sample()
with obj as sample:
res += sample
return res, obj.num
test_net = TestNet()
out1, out2 = test_net()
print("out1:", out1)
print("out2:", out2)
The result is as follows:
out1: [5]
out2: [2]
Raise Statement
Raise error according to the input error type and error message.
Calling: raise Exception(error message)
Input parameters:
Exception
– Error type.error message
– Error message.
Return value: None.
For example:
import mindspore as ms
@ms.jit()
def test(tensor_to_raise):
raise ValueError(f"input should not be {tensor_to_raise}")
tensor_to_raise = Tensor(1)
ret = test(tensor_to_raise)
The result is as follows:
ValueError: input should not be 1.
Functions
Python Built-in Functions
Currently, the following built-in Python functions are supported: int
, float
, bool
, str
, list
, tuple
, getattr
, hasattr
, len
, isinstance
, all
, round
, any
, max
, min
, sum
, abs
, partial
, map
, range
, enumerate
, super
, pow
, filter
. The usage of built-in function is similar to the usage of corresponding Python built-in function.
int
Return the integer value based on the input number or string.
Calling: int(x=0, base=10)
Input parameter:
x
– the object need to be converted to integer, the valid type of x includesint
,float
,bool
,str
,Tensor
and third-party object (such asnumpy.ndarray
).base
– the base to convert.base
is only allowed whenx
is constantstr
.
Return value: the converted integer.
For example:
import mindspore as ms
@ms.jit
def func():
a = int(3)
b = int(3.6)
c = int('12', 16)
d = int('0xa', 16)
e = int('10', 8)
return a, b, c, d, e
a, b, c, d, e = func()
print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
print("e: ", e)
The result is as follows:
a: 3
b: 3
c: 18
d: 10
e: 8
float
Return the floating-point number based on the input number or string.
Calling: float(x=0)
Input parameter: x
– the object need to be converted to floating number, the valid type of x includes int
, float
, bool
, str
, Tensor
and third-party object (such as numpy.ndarray
).
Return value: the converted floating-point number.
For example:
import mindspore as ms
@ms.jit
def func():
a = float(1)
b = float(112)
c = float(-123.6)
d = float('123')
return a, b, c, d
a, b, c, d = func()
print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
The result is as follows:
a: 1.0
b: 112.0
c: -123.6
d: 123.0
bool
Return the boolean value based on the input.
Calling: bool(x=false)
Input parameter: x
– the object need to be converted to boolean value, the valid type of x includes int
, float
, bool
, str
, list
, tuple
, dict
, Tensor
and third-party object (such as numpy.ndarray
).
Return value: if x
is not Tensor
, returns the converted boolean scalar. Otherwise, returns boolean Tensor
.
For example:
import mindspore as ms
@ms.jit
def func():
a = bool()
b = bool(0)
c = bool("abc")
d = bool([1, 2, 3, 4])
e = bool(ms.Tensor([10]))
return a, b, c, d, e
a, b, c, d, e = func()
print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
print("e: ", e)
The result is as follows:
a: False
b: False
c: True
d: True
e: [ True] # e is boolean Tensor
str
Return the string value based on the input.
Calling: str(x='')
Input parameter: x
– the object need to be converted to string value, the valid type of x includes int
, float
, bool
, str
, list
, tuple
, dict
, Tensor
and third-party object (such as numpy.ndarray
). list
, tuple
and dict
can not contain non-constant element.
Return value: string converted from x
.
For example:
import numpy as np
import mindspore as ms
@ms.jit
def func():
a = str()
b = str(0)
c = str([1, 2, 3, 4])
d = str(ms.Tensor([10]))
e = str(np.array([1, 2, 3, 4]))
return a, b, c, d, e
a, b, c, d, e = func()
print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
print("e: ", e)
The result is as follows:
a: # a is empty string
b: 0
c: [1, 2, 3, 4]
d: Tensor(shape=[1], dtype=Int64, value=[10])
e: [1 2 3 4]
tuple
Return a tuple based on the input object.
Calling: tuple(x=())
Input parameter: x
– the object that need to be converted to tuple, the valid type of x includes Tuple
, List
, Dictionary
, Tensor
or third-party object (such as numpy.ndarray).
Return value: tuple with elements of x
, x
is cut based on zero dimension.
For example:
import numpy as np
import mindspore as ms
@ms.jit
def func():
a = tuple((1, 2, 3))
b = tuple(np.array([1, 2, 3]))
c = tuple({'a': 1, 'b': 2, 'c': 3})
d = tuple(ms.Tensor([1, 2, 3]))
return a, b, c ,d
a, b, c ,d = func()
print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
The result is as follows:
a: (1, 2, 3)
b: (1, 2, 3)
c: ('a', 'b', 'c')
d: (Tensor(shape=[], dtype=Int64, value= 1), Tensor(shape=[], dtype=Int64, value= 2), Tensor(shape=[], dtype=Int64, value= 3))
list
Return a list based on the input object.
Calling: list(x=())
Input parameter: x
– the object that need to be converted to list, the valid type of x includes Tuple
, List
, Dictionary
, Tensor
or third-party object (such as numpy.ndarray).
Return value: list with elements of x
, x
is cut based on zero dimension.
For example:
import numpy as np
import mindspore as ms
@ms.jit
def func():
a = list((1, 2, 3))
b = list(np.array([1, 2, 3]))
c = list({'a':1, 'b':2, 'c':3})
d = list(ms.Tensor([1, 2, 3]))
return a, b, c, d
a_t, b_t, c_t, d_t = func()
print("a_t: ", a_t)
print("b_t: ", b_t)
print("c_t: ", c_t)
print("d_t: ", d_t)
The result is as follows:
a_t: [1, 2, 3]
b_t: [1, 2, 3]
c_t: ['a', 'b', 'c']
d_t: [Tensor(shape=[], dtype=Int64, value= 1), Tensor(shape=[], dtype=Int64, value= 2), Tensor(shape=[], dtype=Int64, value= 3)]
getattr
Get the attribute of python object.
Calling: getattr(x, attr, default)
Input parameter:
x
– The object to get attribute,x
can be all types that graph mode supports.x
can not be third-party object.attr
– The name of the attribute, the type ofattr
should bestr
.default
– Optional input. Ifx
do not haveattr
,getattr
will returndefault
.default
can be all types that graph mode supports but can not be third-party object. Ifdefault
is not set andx
does not have attributeattr
, AttributeError will be raised.
Return value: Target attribute or default
.
For example:
import mindspore as ms
@ms.jit_class
class MSClass1:
def __init__(self):
self.num0 = 0
ms_obj = MSClass1()
@ms.jit
def func():
a = getattr(ms_obj, 'num0')
b = getattr(ms_obj, 'num1', 2)
return a, b
a, b = func()
print("a: ", a)
print("b: ", b)
The result is as follows:
a: 0
b: 2
The attribute of object in graph mode may be different from that in pynative mode. It is suggested to use default
input in getattr
or call hasattr
before using getattr
to avoid AttributeError.
hasattr
Judge whether an object has an attribute.
Calling: hasattr(x, attr)
Input parameter:
x
– The object to get attribute,x
can be all types that graph mode supports and also can be third-party object.attr
– The name of the attribute, the type ofattr
should bestr
.
Return value: boolean value indicates whether x
has attr
.
For example:
import mindspore as ms
@ms.jit_class
class MSClass1:
def __init__(self):
self.num0 = 0
ms_obj = MSClass1()
@ms.jit
def func():
a = hasattr(ms_obj, 'num0')
b = hasattr(ms_obj, 'num1')
return a, b
a, b = func()
print("a: ", a)
print("b: ", b)
The result is as follows:
a: True
b: False
len
Return the length of a sequence.
Calling: len(sequence)
Input parameter: sequence
– Tuple
, List
, Dictionary
, Tensor
or third-party object (such as numpy.ndarray).
Return value: length of the sequence, which is of the int
type. If the input parameter is Tensor
, the length of dimension 0 is returned.
For example:
import mindspore as ms
import numpy as np
z = ms.Tensor(np.ones((6, 4, 5)))
@ms.jit()
def test():
x = (2, 3, 4)
y = [2, 3, 4]
d = {"a": 2, "b": 3}
n = np.array([1, 2, 3, 4])
x_len = len(x)
y_len = len(y)
d_len = len(d)
z_len = len(z)
n_len = len(n)
return x_len, y_len, d_len, z_len, n_len
x_len, y_len, d_len, z_len, n_len = test()
print('x_len:{}'.format(x_len))
print('y_len:{}'.format(y_len))
print('d_len:{}'.format(d_len))
print('z_len:{}'.format(z_len))
print('n_len:{}'.format(n_len))
The result is as follows:
x_len:3
y_len:3
d_len:2
z_len:6
n_len:4
isinstance
Determines whether an object is an instance of a class. Different from operator Isinstance
, the second input parameter of Isinstance
is the type defined in the dtype
module of MindSpore.
Calling: isinstance(obj, type)
Input parameters:
obj
– Any instance of any supported type.type
– A type in theMindSpore dtype
module.
Return value: If obj
is an instance of type
, return True
. Otherwise, return False
.
For example:
import mindspore as ms
import numpy as np
z = ms.Tensor(np.ones((6, 4, 5)))
@ms.jit()
def test():
x = (2, 3, 4)
y = [2, 3, 4]
x_is_tuple = isinstance(x, tuple)
y_is_list = isinstance(y, list)
z_is_tensor = isinstance(z, ms.Tensor)
return x_is_tuple, y_is_list, z_is_tensor
x_is_tuple, y_is_list, z_is_tensor = test()
print('x_is_tuple:{}'.format(x_is_tuple))
print('y_is_list:{}'.format(y_is_list))
print('z_is_tensor:{}'.format(z_is_tensor))
The result is as follows:
x_is_tuple:True
y_is_list:True
z_is_tensor:True
all
Judge whether all of the elements in the input is true.
Calling: all(x)
Input parameter: - x
– Iterable object, the valid types include list
, tuple
, dict
, Tensor
and third-party object (such as numpy.ndarray
).
Return value: boolean, indicates whether all of the elements in the input is true.
For example:
import mindspore as ms
@ms.jit
def func():
a = all(['a', 'b', 'c', 'd'])
b = all(['a', 'b', '', 'd'])
c = all([0, 1, 2, 3])
d = all(('a', 'b', 'c', 'd'))
e = all(('a', 'b', '', 'd'))
f = all((0, 1, 2, 3))
g = all([])
h = all(())
return a, b, c, d, e, f, g, h
a, b, c, d, e, f, g, h = func()
print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
print("e: ", e)
print("f: ", f)
print("g: ", g)
print("h: ", h)
The result is as follows:
a: True
b: False
c: False
d: True
e: False
f: False
g: True
h: True
any
Judge whether any of the elements in the input is true.
Calling: any(x)
Input parameter: - x
– Iterable object, the valid types include list
, tuple
, dict
, Tensor
and third-party object (such as numpy.ndarray
).
Return value: boolean, indicates whether any of the elements in the input is true.
For example:
import mindspore as ms
@ms.jit
def func():
a = any(['a', 'b', 'c', 'd'])
b = any(['a', 'b', '', 'd'])
c = any([0, '', False])
d = any(('a', 'b', 'c', 'd'))
e = any(('a', 'b', '', 'd'))
f = any((0, '', False))
g = any([])
h = any(())
return a, b, c, d, e, f, g, h
a, b, c, d, e, f, g, h = func()
print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
print("e: ", e)
print("f: ", f)
print("g: ", g)
print("h: ", h)
The result is as follows:
a: True
b: True
c: False
d: True
e: True
f: False
g: False
h: False
round
Return the rounding value of input.
Calling: round(x, digit=0)
Input parameter:
x
– the object to rounded, the valid types includeint
,float
,bool
,Tensor
and third-party object that defines magic function__round__()
.digit
– the number of decimal places to round, the default value is 0.digit
can beint
object orNone
. Ifx
isTensor
, thenround()
does not support inputdigit
.
Return value: the value after rounding.
For example:
import mindspore as ms
@ms.jit
def func():
a = round(10)
b = round(10.123)
c = round(10.567)
d = round(10, 0)
e = round(10.72, -1)
f = round(17.12, -1)
g = round(10.17, 1)
h = round(10.12, 1)
return a, b, c, d, e, f, g, h
a, b, c, d, e, f, g, h = func()
print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
print("e: {:.2f}".format(e))
print("f: {:.2f}".format(f))
print("g: {:.2f}".format(g))
print("h: {:.2f}".format(h))
The result is as follows:
a: 10
b: 10
c: 11
d: 10
e: 10.00
f: 20.00
g: 10.20
h: 10.10
max
Return the maximum of inputs.
Calling: max(*data)
Input parameter: - *data
– If *data
is single input, max
will compare all elements within data
and data
must be iterable object. If there are multiple inputs, then max()
will compare each of them. The valid types of data
include int
, float
, bool
, list
, tuple
, dict
, Tensor
and third-party object (such as numpy.ndarray
).
Return value: boolean, the maximum of the inputs.
For example:
import numpy as np
import mindspore as ms
@ms.jit
def func():
a = max([0, 1, 2, 3])
b = max((0, 1, 2, 3))
c = max({1: 10, 2: 20, 3: 3})
d = max(np.array([1, 2, 3, 4]))
e = max(('a', 'b', 'c'))
f = max((1, 2, 3), (1, 4))
g = max(ms.Tensor([1, 2, 3]))
return a, b, c, ms.Tensor(d), e, f, g
a, b, c, d, e, f, g = func()
print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
print("e: ", e)
print("f: ", f)
print("g: ", g)
The result is as follows:
a: 3
b: 3
c: 3
d: 4
e: c
f: (1, 4)
g: 3
min
Return the minimum of inputs.
Calling: min(*data)
Input parameter: - *data
– If *data
is single input, then min()
will compare all elements within data
and data
must be iterable object. If there are multiple inputs, then min()
will compare each of them. The valid types of data
include int
, float
, bool
, list
, tuple
, dict
, Tensor
and third-party object (such as numpy.ndarray
).
Return value: boolean, the minimum of the inputs.
For example:
import numpy as np
import mindspore as ms
@ms.jit
def func():
a = min([0, 1, 2, 3])
b = min((0, 1, 2, 3))
c = min({1: 10, 2: 20, 3: 3})
d = min(np.array([1, 2, 3, 4]))
e = min(('a', 'b', 'c'))
f = min((1, 2, 3), (1, 4))
g = min(ms.Tensor([1, 2, 3]))
return a, b, c, ms.Tensor(d), e, f, g
a, b, c, d, e, f, g = func()
print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
print("e: ", e)
print("f: ", f)
print("g: ", g)
The result is as follows:
a: 0
b: 0
c: 1
d: 1
e: a
f: (1, 2, 3)
g: 1
sum
Return the sum of input sequence.
Calling: sum(x, n=0)
Input parameter:
x
– iterable with numbers, the valid types includelist
,tuple
,Tensor
and third-party object (such asnumpy.ndarray
).n
– the number that will be added to the sum ofx
, which is assumed to be 0 if not given.
Return value: the value obtained by summing x
and adding it to n
.
For example:
import numpy as np
import mindspore as ms
@ms.jit
def func():
a = sum([0, 1, 2])
b = sum((0, 1, 2), 10)
c = sum(np.array([1, 2, 3]))
d = sum(ms.Tensor([1, 2, 3]), 10)
e = sum(ms.Tensor([[1, 2], [3, 4]]))
f = sum([1, ms.Tensor([[1, 2], [3, 4]]), ms.Tensor([[1, 2], [3, 4]])], ms.Tensor([[1, 1], [1, 1]]))
return a, b, ms.Tensor(c), d, e, f
a, b, c, d, e, f = func()
print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
print("e: ", e)
print("f: ", f)
The result is as follows:
a: 3
b: 13
c: 6
d: 16
e: [4 6]
f: [[ 4 6]
[ 8 10]]
abs
Return the absolute value of the input. The usage of abs()
is the same as python built-in function abs()
.
Calling: abs(x)
Input parameter: - x
– The valid types of x
include int
, float
, bool
, complex
, Tensor
and third-party object (such as numpy.ndarray
).
Return value: the absolute value of the input.
For example:
import mindspore as ms
@ms.jit
def func():
a = abs(-45)
b = abs(100.12)
return a, b
a, b = func()
print("a: ", a)
print("b: {:.2f}".format(b))
The result is as follows:
a: 45
b: 100.12
partial
A partial function used to fix the input parameter of the function.
Calling: partial(func, arg, ...)
Input parameters:
func
–Function.arg
– One or more parameters to be fixed. Position parameters and key-value pairs can be specified.
Return value: functions with certain input parameter values fixed
For example:
import mindspore as ms
from mindspore import ops
def add(x, y):
return x + y
@ms.jit()
def test():
add_ = ops.partial(add, x=2)
m = add_(y=3)
n = add_(y=5)
return m, n
m, n = test()
print('m:{}'.format(m))
print('n:{}'.format(n))
The result is as follows:
m:5
n:7
map
Maps one or more sequences based on the provided functions and generates a new sequence based on the mapping result. If the number of elements in multiple sequences is inconsistent, the length of the new sequence is the same as that of the shortest sequence.
Calling: map(func, sequence, ...)
Input parameters:
func
– Function.sequence
– One or more sequences (Tuple
orList
).
Return value: A Tuple
For example:
import mindspore as ms
def add(x, y):
return x + y
@ms.jit()
def test():
elements_a = (1, 2, 3)
elements_b = (4, 5, 6)
ret = map(add, elements_a, elements_b)
return ret
ret = test()
print('ret:{}'.format(ret))
The result is as follows:
ret: (5, 7, 9)
zip
Packs elements in the corresponding positions in multiple sequences into tuples, and then uses these tuples to form a new sequence. If the number of elements in each sequence is inconsistent, the length of the new sequence is the same as that of the shortest sequence.
Calling: zip(sequence, ...)
Input parameter: sequence
– One or more sequences (Tuple
or List
)`.
Return value: A Tuple
For example:
import mindspore as ms
@ms.jit()
def test():
elements_a = (1, 2, 3)
elements_b = (4, 5, 6)
ret = zip(elements_a, elements_b)
return ret
ret = test()
print('ret:{}'.format(ret))
The result is as follows:
ret:((1, 4), (2, 5), (3, 6))
range
Creates a Tuple
based on the start value, end value, and step.
Calling:
range(start, stop, step)
range(start, stop)
range(stop)
Input parameters:
start
– start value of the count. The type isint
. The default value is 0.stop
– end value of the count (exclusive). The type isint
.step
– Step. The type isint
. The default value is 1.
Return value: A Tuple
For example:
import mindspore as ms
@ms.jit()
def test():
x = range(0, 6, 2)
y = range(0, 5)
z = range(3)
return x, y, z
x, y, z = test()
print('x:{}'.format(x))
print('y:{}'.format(y))
print('z:{}'.format(z))
The result is as follows:
x:(0, 2, 4)
y:(0, 1, 2, 3, 4)
z:(0, 1, 2)
enumerate
Generates an index sequence of a sequence. The index sequence contains data and the corresponding subscript.
Calling:
enumerate(sequence, start)
enumerate(sequence)
Input parameters:
sequence
– A sequence (Tuple
,List
, orTensor
).start
– Start position of the subscript. The type isint
. The default value is 0.
Return value: A Tuple
For example:
import mindspore as ms
import numpy as np
y = ms.Tensor(np.array([[1, 2], [3, 4], [5, 6]]))
@ms.jit()
def test():
x = (100, 200, 300, 400)
m = enumerate(x, 3)
n = enumerate(y)
return m, n
m, n = test()
print('m:{}'.format(m))
print('n:{}'.format(n))
The result is as follows:
m:((3, 100), (4, 200), (5, 300), (6, 400))
n:((0, Tensor(shape=[2], dtype=Int64, value= [1, 2])), (1, Tensor(shape=[2], dtype=Int64, value= [3, 4])), (2, Tensor(shape=[2], dtype=Int64, value= [5, 6])))
super
Calls a method of the parent class (super class). Generally, the method of the parent class is called after super
.
Calling:
super().xxx()
super(type, self).xxx()
Input parameters:
type
– Class.self
– Object.
Return value: method of the parent class.
For example:
import mindspore as ms
from mindspore import nn, set_context
set_context(mode=ms.GRAPH_MODE)
class FatherNet(nn.Cell):
def __init__(self, x):
super(FatherNet, self).__init__(x)
self.x = x
def construct(self, x, y):
return self.x * x
def test_father(self, x):
return self.x + x
class SingleSubNet(FatherNet):
def __init__(self, x, z):
super(SingleSubNet, self).__init__(x)
self.z = z
def construct(self, x, y):
ret_father_construct = super().construct(x, y)
ret_father_test = super(SingleSubNet, self).test_father(x)
return ret_father_construct, ret_father_test
x = 3
y = 6
z = 9
f_net = FatherNet(x)
net = SingleSubNet(x, z)
out = net(x, y)
print("out:", out)
The result is as follows:
out: (9, 6)
pow
Return the power.
Calling: pow(x, y)
Input parameters:
x
– Base number,Number
, orTensor
.y
– Power exponent,Number
, orTensor
.
Return value: y
power of x
, Number
, or Tensor
For example:
import mindspore as ms
import numpy as np
x = ms.Tensor(np.array([1, 2, 3]))
y = ms.Tensor(np.array([1, 2, 3]))
@ms.jit()
def test(x, y):
return pow(x, y)
ret = test(x, y)
print('ret:{}'.format(ret))
The result is as follows:
ret:[ 1 4 27]
print
Prints logs.
Calling: print(arg, ...)
Input parameter: arg
– Information to be printed (int
, float
, bool
, String
or Tensor
).
When the arg
is int
, float
, or bool
, it will be printed out as a 0-D
tensor.
Return value: none
For example:
import mindspore as ms
import numpy as np
x = ms.Tensor(np.array([1, 2, 3]), ms.int32)
y = ms.Tensor(3, ms.int32)
@ms.jit()
def test(x, y):
print(x)
print(y)
return x, y
ret = test(x, y)
The result is as follows:
Tensor(shape=[3], dtype=Int32, value= [1 2 3])
Tensor(shape=[], dtype=Int32, value=3)
filter
According to the provided function to judge the elements of a sequence. Each element is passed into the function as a parameter in turn, and the elements whose return result is not 0 or False form a new sequence.
Calling: filter(func, sequence)
Input parameters:
func
– Function.sequence
– A sequence (Tuple
orList
).
Return value: A Tuple
.
For example:
import mindspore as ms
def is_odd(x):
if x % 2:
return True
return False
@ms.jit()
def test():
elements = (1, 2, 3, 4, 5)
ret = filter(is_odd, elements)
return ret
ret = test()
print('ret:{}'.format(ret))
The result is as follows:
ret:(1, 3, 5)
Function Parameters
Default parameter value: The data types
int
,float
,bool
,None
,str
,tuple
,list
, anddict
are supported, whereasTensor
is not supported.Variable parameters: Inference and training of networks with variable parameters are supported.
Key-value pair parameter: Functions with key-value pair parameters cannot be used for backward propagation on computational graphs.
Variable key-value pair parameter: Functions with variable key-value pairs cannot be used for backward propagation on computational graphs.
Network Definition
Network Input parameters
The input parameters of the outermost network only can be lool
, int
, float
, Tensor
, None
, mstype.number(mstype.bool, mstype.int, mstype.float, mstype.uint)
, List
or Tuple
that contains these types, and Dictionary
whose values are these types.
While calculating gradient for outermost network, only Tensor
input could be calculated, input of other type will be ignored. For example, input parameter (x, y, z)
of outermost network, x
and z
are Tensor
type, y
is other type. While calculating gradient for the network, only gradients of x
and z
are calculated, and (grad_x, grad_y)
is returned.
If you want to use other types of input for the network, please transfer them to the network while initializing network in the __init__
function, and save them as network attributes, then use in the construct
.
The input parameters of inner network do not have this restriction.
For example:
import mindspore as ms
from mindspore import nn, ops, set_context
import numpy as np
set_context(mode=ms.GRAPH_MODE)
class Net(nn.Cell):
def __init__(self, flag):
super(Net, self).__init__()
self.flag = flag
def construct(self, x, y, z):
if self.flag == "ok":
return x + y + z
return x - y - z
class GradNet(nn.Cell):
def __init__(self, net):
super(GradNet, self).__init__()
self.forward_net = net
def construct(self, x, y, z):
return ms.grad(self.forward_net, grad_position=(0, 1, 2))(x, y, z)
flag = "ok"
input_x = ms.Tensor(np.ones((2, 3)).astype(np.float32))
input_y = 2
input_z = ms.Tensor(np.ones((2, 3)).astype(np.float32) * 2)
net = Net(flag)
grad_net = GradNet(net)
ret = grad_net(input_x, input_y, input_z)
print('ret:{}'.format(ret))
The result is as follows:
ret:(Tensor(shape=[2, 3], dtype=Float32, value=
[[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00],
[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]), Tensor(shape=[2, 3], dtype=Float32, value=
[[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00],
[ 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]]))
In the Net
defined above, string
flag is transferred during initialization and saved as attribute self.flag
, then used in the construct
.
The input parameter x
and z
are Tensor
, y
is int
. While grad_net
calculates gradient of the input parameters (x, y, z)
for the outermost network, gradient of y
is automatically ignored, only the gradient of x
and z
is calculated, ret = (grad_x, grad_z)
.
Instance Types on the Entire Network
Network Construction Components
Category |
Content |
---|---|
|
mindspore/nn/* and user-defined Cell. |
Member function of a |
Member functions of other classes in the construct function of Cell can be called. |
|
Class decorated with @jit_class. |
|
|
|
|
|
Value computation operator generated by @constexpr. |
Function |
User-defined Python functions and system functions listed in the preceding content. |
Network Constraints
You are not allowed to modify non-
Parameter
data members of the network.For example:
import mindspore as ms from mindspore import nn, set_context import numpy as np set_context(mode=ms.GRAPH_MODE) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.x = 2 self.par = ms.Parameter(ms.Tensor(np.ones((2, 3, 4))), name="par") def construct(self, x, y): self.par[0] = y self.x = x return x + y net = Net() net(1, 2)
In the preceding defined network,
self.x
is not aParameter
and cannot be modified.self.par
is aParameter
and can be modified.The result would be:
TypeError: 'self.x' should be initialized as a 'Parameter' type in the '__init__' function
When an undefined class member is used in the
construct
function,AttributeError
exception will be thrown.For example:
import mindspore as ms from mindspore import nn, set_context set_context(mode=ms.GRAPH_MODE) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() def construct(self, x): return x + self.y net = Net() net(1)
The result would be:
AttributeError: External object has no attribute y
Class methods modified by
classmethod
innn.Cell
are not supported.