mindspore.nn.GELU
- class mindspore.nn.GELU(approximate=True)[source]
Gaussian error linear unit activation function.
Applies GELU function to each element of the input. The input is a Tensor with any valid shape.
GELU is defined as:
\[GELU(x_i) = x_i*P(X < x_i),\]where \(P\) is the cumulative distribution function of standard Gaussian distribution and \(x_i\) is the element of the input.
The picture about GELU looks like this GELU.
- Parameters
approximate (bool) –
Whether to enable approximation. Default: True.
If approximate is True, The gaussian error linear activation is:
\(0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))\)
else, it is:
\(x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2)))\), where P(X) ~ N(0, 1).
- Inputs:
x (Tensor) - The input of GELU with data type of float16 or float32. The shape is \((N,*)\) where \(*\) means, any number of additional dimensions.
- Outputs:
Tensor, with the same type and shape as the x.
- Raises
TypeError – If dtype of x is neither float16 nor float32.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> gelu = nn.GELU() >>> output = gelu(x) >>> print(output) [[-1.5880802e-01 3.9999299e+00 -3.1077917e-21] [ 1.9545976e+00 -2.2918017e-07 9.0000000e+00]] >>> gelu = nn.GELU(approximate=False) >>> # CPU not support "approximate=False", using "approximate=True" instead >>> output = gelu(x) >>> print(output) [[-1.5865526e-01 3.9998732e+00 -0.0000000e+00] [ 1.9544997e+00 -1.4901161e-06 9.0000000e+00]]