mindspore.ops.moe_token_permute
- mindspore.ops.moe_token_permute(tokens, indices, num_out_tokens=None, padded_mode=False)[source]
Permute the tokens based on the indices. Token with the same index will be grouped together.
Warning
It is only supported on Atlas A2 Training Series Products.
When indices is 2-D, the size of the second dim must be less than or equal to 512.
- Parameters
tokens (Tensor) – The input token tensor to be permuted. The dtype is bfloat16, float16 or float32. The shape is
, where num_tokens and hidden_size are positive integers.indices (Tensor) – The tensor specifies indices used to permute the tokens. The dtype is int32 or int64. The shape is
or , where num_tokens and topk are positive integers. If the shape is the latter case, topk is implied to be 1.num_out_tokens (int, optional) – The effective output token count, when enabling the capacity factor, should equal the number of tokens not dropped. It should be non-negative integer. Default:
None
, meaning no tokens are dropped.padded_mode (bool, optional) – If
True
, indicating the indices are padded to denote selected tokens per expert. It can only be False currently. Default:False
.
- Returns
tuple (Tensor), tuple of 2 tensors, containing the permuted tokens and sorted indices.
permuted_tokens (Tensor) - The permuted tensor of the same dtype as tokens.
sorted_indices (Tensor) - The indices Tensor of dtype int32, corresponds to permuted tensor.
- Raises
TypeError – If tokens or indices is not a Tensor.
TypeError – If dtype of indices is not int32 or int64.
TypeError – If specified num_out_tokens is not an integer.
TypeError – If specified padded_mode is not a bool.
ValueError – If second dim of indices is greater than 512 when exists.
ValueError – If padded_node is set to True.
ValueError – If tokens is not 2-D or indices is not 1-D or 2-D Tensor.
RuntimeError – If first dimensions of tokens and indices are not consistent.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> from mindspore import Tensor, ops >>> tokens = Tensor([[1, 1, 1], ... [7, 7, 7], ... [2, 2, 2], ... [1, 1, 1], ... [2, 2, 2], ... [3, 3, 3]], dtype=mindspore.bfloat16) >>> indices = Tensor([5, 0, 3, 1, 2, 4], dtype=mindspore.int32) >>> out = ops.moe_token_permute(tokens, indices) >>> print(out) (Tensor(shape=[6, 3], dtype=BFloat16, value= [[7, 7, 7], [1, 1, 1], [2, 2, 2], [2, 2, 2], [3, 3, 3], [1, 1, 1]]), Tensor(shape=[6], dtype=Int32, value= [5, 0, 3, 1, 2, 4]))