mindspore.ops.addbmm

View Source On Gitee
mindspore.ops.addbmm(input, batch1, batch2, *, beta=1, alpha=1)[source]

Apply batch matrix multiplication to batch1 and batch2, with a reduced add step and add input to the result.

Note

  • batch1 and batch2 must be 3-D tensors each containing the same number of matrices.

  • When batch1 is a (C,W,T) tensor and batch2 is a (C,T,H) tensor, input must be broadcastable with (W,H) tensor, and out will be a (W,H) tensor.

  • If beta is 0, then input will be ignored.

output=βinput+α(i=0b1batch1i@batch2i)
Parameters
  • input (Tensor) – The input tensor.

  • batch1 (Tensor) – The first batch of tensor to be multiplied.

  • batch2 (Tensor) – The second batch of tensor to be multiplied.

Keyword Arguments
  • beta (Union[int, float], optional) – Scale factor for input. Default 1 .

  • alpha (Union[int, float], optional) – Scale factor for ( batch1 @ batch2 ). Default 1 .

Returns

Tensor

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> m = mindspore.ops.ones((3, 3))
>>> arr1 = mindspore.tensor([[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]])
>>> arr2 = mindspore.tensor([[5., 4., 3.], [2., 1., 0.], [8., 7., 6.]])
>>> output = mindspore.ops.addbmm(m, arr1, arr2)
>>> print(output)
[[172. 136. 100.]
 [172. 136. 100.]
 [172. 136. 100.]]