Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

PR

Just a small problem.

I can fix it online!

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.SparseApplyFtrl

View Source On Gitee
class mindspore.ops.SparseApplyFtrl(lr, l1, l2, lr_power, use_locking=False)[source]

Updates relevant entries according to the FTRL-proximal scheme For more details, please refer to mindspore.nn.FTRL.

All of inputs except indices comply with the implicit type conversion rules to make the data types consistent. If they have different data types, the lower priority data type will be converted to the relatively highest priority data type.

Parameters
  • lr (float) – The learning rate value, must be positive.

  • l1 (float) – l1 regularization strength, must be greater than or equal to zero.

  • l2 (float) – l2 regularization strength, must be greater than or equal to zero.

  • lr_power (float) – Learning rate power controls how the learning rate decreases during training, must be less than or equal to zero. Use fixed learning rate if lr_power is zero.

  • use_locking (bool, optional) – Use locks for updating operation if True . Default: False .

Inputs:
  • var (Union[Parameter, Tensor]) - The variable to be updated. The data type must be float16 or float32. The shape is (N,) where means, any number of additional dimensions.

  • accum (Union[Parameter, Tensor]) - The accumulation to be updated, must be same shape as var.

  • linear (Union[Parameter, Tensor]) - The linear coefficient to be updated, must be the same shape as var.

  • grad (Tensor) - A tensor must meet with grad.shape[1:]=var.shape[1:] if var.shape > 1.

  • indices (Tensor) - A tensor of indices in the first dimension of var and accum. If there are duplicates in indices, the behavior is undefined. The type must be int32 or int64 and indices.shape[0]=grad.shape[0].

Outputs:
  • var (Tensor) - Tensor, has the same shape and data type as var.

  • accum (Tensor) - Tensor, has the same shape and data type as accum.

  • linear (Tensor) - Tensor, has the same shape and data type as linear.

Raises
  • TypeError – If lr, l1, l2 or lr_power is not a float.

  • TypeError – If use_locking is not a bool.

  • TypeError – If dtype of var, accum, linear or grad is neither float16 nor float32.

  • TypeError – If dtype of indices is neither int32 nor int64.

  • RuntimeError – If the data type of all of inputs except indices conversion of Parameter is not supported.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, nn, Parameter, ops
>>> class SparseApplyFtrlNet(nn.Cell):
...     def __init__(self):
...         super(SparseApplyFtrlNet, self).__init__()
...         self.sparse_apply_ftrl = ops.SparseApplyFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5)
...         self.var = Parameter(Tensor(np.array([[0.2]]).astype(np.float32)), name="var")
...         self.accum = Parameter(Tensor(np.array([[0.1]]).astype(np.float32)), name="accum")
...         self.linear = Parameter(Tensor(np.array([[0.6]]).astype(np.float32)), name="linear")
...
...     def construct(self, grad, indices):
...         out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
...         return out
...
>>> net = SparseApplyFtrlNet()
>>> grad = Tensor(np.array([[0.7]]).astype(np.float32))
>>> indices = Tensor(np.ones([1]), mindspore.int32)
>>> output = net(grad, indices)
>>> print(output)
(Tensor(shape=[1, 1], dtype=Float32, value=
[[2.00000003e-01]]), Tensor(shape=[1, 1], dtype=Float32, value=
[[1.00000001e-01]]), Tensor(shape=[1, 1], dtype=Float32, value=
[[6.00000024e-01]]))