mindspore.ops.BesselK0

View Source On Gitee
class mindspore.ops.BesselK0[source]

Computes modified Bessel function of the second kind, order 0 element-wise.

The formula is defined as:

\[\begin{split}\begin{array}{ll} \\ K_{0}(x)= \lim_{\nu \to 0} \left(\frac{\pi}{2}\right) \frac {I_{-\nu}(x)-I_{\nu}(x)}{\sin (\nu \pi)} = \int_{0}^{\infty} e^{-x \cosh t} d t \end{array}\end{split}\]

where \(I_{0}\) is modified Bessel function of the first kind, order 0.

Warning

This is an experimental API that is subject to change or deletion.

Inputs:
  • x (Tensor) - The input tensor. Data type must be float16, float32, float64.

Outputs:

Tensor, has the same shape as x.

Raises

TypeError – If x is not a Tensor of float16, float32, float64.

Supported Platforms:

GPU CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> bessel_k0 = ops.BesselK0()
>>> x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
>>> output = bessel_k0(x)
>>> print(output)
[1.579826  0.5402144 1.3424659 2.5310173]