mindspore.nn.GRUCell

View Source On Gitee
class mindspore.nn.GRUCell(input_size: int, hidden_size: int, has_bias: bool = True, dtype=mstype.float32)[source]

A GRU(Gated Recurrent Unit) cell.

r=σ(Wirx+bir+Whrh+bhr)z=σ(Wizx+biz+Whzh+bhz)n=tanh(Winx+bin+r(Whnh+bhn))h=(1z)n+zh

Here σ is the sigmoid function, and is the Hadamard product. W,b are learnable weights between the output and the input in the formula. h is hidden state. r is reset gate. z is update gate. n is n-th layer. For instance, Wir,bir are the weight and bias used to transform from input x to r. Details can be found in paper Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation.

Parameters
  • input_size (int) – Number of features of input.

  • hidden_size (int) – Number of features of hidden layer.

  • has_bias (bool) – Whether the cell has bias bin and bhn. Default: True .

  • dtype (mindspore.dtype) – Dtype of Parameters. Default: mstype.float32 .

Inputs:
  • x (Tensor) - Tensor of shape (batch_size,input_size) .

  • hx (Tensor) - Tensor of data type mindspore.float32 and shape (batch_size,hidden_size) .

Outputs:
  • hx' (Tensor) - Tensor of shape (batch_size,hidden_size) .

Raises
  • TypeError – If input_size, hidden_size is not an int.

  • TypeError – If has_bias is not a bool.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore as ms
>>> import numpy as np
>>> net = ms.nn.GRUCell(10, 16)
>>> x = ms.Tensor(np.ones([5, 3, 10]).astype(np.float32))
>>> hx = ms.Tensor(np.ones([3, 16]).astype(np.float32))
>>> output = []
>>> for i in range(5):
...     hx = net(x[i], hx)
...     output.append(hx)
>>> print(output[0].shape)
(3, 16)