mindspore.mint.count_nonzero
- mindspore.mint.count_nonzero(input, dim=None)[source]
Counts the number of non-zero values in the tensor input along the given dim. If no dim is specified then all non-zeros in the tensor are counted.
Warning
This is an experimental API that is subject to change or deletion.
- Parameters
input (Tensor) – Input data is used to count non-zero numbers. With shape \((*)\) where \(*\) means, any number of additional dimensions.
dim (Union[int, tuple(int), list(int)], optional) – The dimension to reduce. Default value:
None
, which indicates that the number of non-zero elements is calculated. If dim isNone
, all elements in the tensor are summed up.
- Returns
Tensor, number of nonzero element across dim specified by dim.
- Raises
TypeError – If input is not tensor.
TypeError – If dim is not int, tuple(int), list(int) or None.
ValueError – If any value in dim is not in range [-x.ndim, x.ndim).
- Supported Platforms:
Ascend
Examples
>>> from mindspore import Tensor, mint >>> import numpy as np >>> import mindspore >>> # case 1: each value specified. >>> x = Tensor(np.array([[0, 1, 0], [1, 1, 0]]).astype(np.float32)) >>> nonzero_num = mint.count_nonzero(input=x, dim=[0, 1]) >>> print(nonzero_num) [[3]] >>> # case 2: all value is default. >>> nonzero_num = mint.count_nonzero(input=x) >>> print(nonzero_num) 3 >>> # case 3: dim value was specified 0. >>> nonzero_num = mint.count_nonzero(input=x, dim=[0,]) >>> print(nonzero_num) [1 2 0] >>> # case 4: dim value was specified 1. >>> nonzero_num = mint.count_nonzero(input=x, dim=[1,]) >>> print(nonzero_num) [1 2]