mindspore.mint.bernoulli
- mindspore.mint.bernoulli(input, *, generator=None)[source]
Sample from the Bernoulli distribution and randomly set the i^{th} element of the output to (0 or 1) according to the i^{th} probability value given in the input.
\[output_{i} \sim Bernoulli(p=input_{i})\]Warning
This is an experimental API that is subject to change or deletion.
- Parameters
input (Tensor) – The input tensor of Bernoulli distribution, where the i^{th} element 'input_{i}' represents the probability that the corresponding output element 'output_{i}' is set to '1', therefore each element in 'input' have to be in the range '[0,1]'. Supported dtype: float16, float32, float64, bfloat16 (only supported by Atlas A2 training series products).
- Keyword Arguments
generator (
mindspore.Generator
, optional) – a pseudorandom number generator. Default:None
, uses the default pseudorandom number generator.- Returns
The output tensor, with the same shape and dtype as input.
- Return type
output (Tensor)
- Raises
TypeError – If dtype of input is not one of: float16, float32, float64, bfloat16.
ValueError – If any element of the input is not in the range [0, 1].
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> from mindspore import mint >>> input_x = Tensor(np.ones((3, 3)), mindspore.float32) >>> output = mint.bernoulli(input_x) >>> print(output) [[ 1. 1. 1.] [ 1. 1. 1.] [ 1. 1. 1.]] >>> input_x = Tensor(np.zeros((3, 3)), mindspore.float32) >>> output = mint.bernoulli(input_x) >>> print(output) [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]]