mindspore.Tensor.uniform_
- Tensor.uniform_(from_=0, to=1, *, generator=None)[source]
Update the self tensor in place by generating random numbers sampled from uniform distribution in the half-open interval \([from\_, to)\).
\[P(x)= \frac{1}{to - from\_}\]Warning
This is an experimental API that is subject to change or deletion.
- Parameters
from_ (Union[number.Number, Tensor], optional) – The lower bound of the uniform distribution, it can be a scalar value or a tensor of any dimension with a single element. Default:
0
.to (Union[number.Number, Tensor], optional) – The upper bound of the uniform distribution, it can be a scalar value or a tensor of any dimension with a single element. Default:
1
.
- Keyword Arguments
generator (
mindspore.Generator
, optional) – a pseudorandom number generator. Default:None
, uses the default pseudorandom number generator.- Returns
Return self Tensor.
- Raises
TypeError – If from_ or to is neither a number nor a Tensor.
TypeError – If dtype of from or to is not one of: bool, int8, int16, int32, int64, uint8, float32, float64.
ValueError – If from_ or to is Tensor but contains multiple elements.
RuntimeError – If from_ is larger than to.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> x = mindspore.ops.ones((4, 2)) >>> generator = mindspore.Generator() >>> generator.manual_seed(100) >>> output = x.uniform_(1., 2., generator=generator) >>> print(output.shape) (4, 2)