Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.nn.MSSSIM

class mindspore.nn.MSSSIM(max_val=1.0, power_factors=(0.0448, 0.2856, 0.3001, 0.2363, 0.1333), filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03)[source]

Returns MS-SSIM index between two images.

Its implementation is based on Wang, Zhou, Eero P. Simoncelli, and Alan C. Bovik. Multiscale structural similarity for image quality assessment. Signals, Systems and Computers, 2004.

l(x,y)=2μxμy+C1μx2+μy2+C1,C1=(K1L)2.c(x,y)=2σxσy+C2σx2+σy2+C2,C2=(K2L)2.s(x,y)=σxy+C3σxσy+C3,C3=C2/2.MSSSIM(x,y)=lMα1jM(cjβsjγ).
Parameters
  • max_val (Union[int, float]) – The dynamic range of the pixel values (255 for 8-bit grayscale images). Default: 1.0.

  • power_factors (Union[tuple, list]) – Iterable of weights for each scal e. Default: (0.0448, 0.2856, 0.3001, 0.2363, 0.1333). Default values obtained by Wang et al.

  • filter_size (int) – The size of the Gaussian filter. Default: 11.

  • filter_sigma (float) – The standard deviation of Gaussian kernel. Default: 1.5.

  • k1 (float) – The constant used to generate c1 in the luminance comparison function. Default: 0.01.

  • k2 (float) – The constant used to generate c2 in the contrast comparison function. Default: 0.03.

Inputs:
  • img1 (Tensor) - The first image batch with format ‘NCHW’. It must be the same shape and dtype as img2.

  • img2 (Tensor) - The second image batch with format ‘NCHW’. It must be the same shape and dtype as img1.

Outputs:

Tensor, the value is in range [0, 1]. It is a 1-D tensor with shape N, where N is the batch num of img1.

Raises
  • TypeError – If max_val is neither int nor float.

  • TypeError – If power_factors is neither tuple nor list.

  • TypeError – If k1, k2 or filter_sigma is not a float.

  • TypeError – If filter_size is not an int.

  • ValueError – If max_val or filter_sigma is less than or equal to 0.

  • ValueError – If filter_size is less than 0.

  • ValueError – If length of shape of img1 or img2 is not equal to 4.

Supported Platforms:

Ascend GPU

Examples

>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor
>>> net = nn.MSSSIM(power_factors=(0.033, 0.033, 0.033))
>>> img1 = Tensor(np.ones((1, 3, 128, 128)).astype(np.float32))
>>> img2 = Tensor(np.ones((1, 3, 128, 128)).astype(np.float32))
>>> output = net(img1, img2)
>>> print(output)
[1.]