mindspore.nn.HShrink
- class mindspore.nn.HShrink(lambd=0.5)[source]
Applies the hard shrinkage function element-wise, each element complies the follow function:
\[\begin{split}\text{HardShrink}(x) = \begin{cases} x, & \text{ if } x > \lambda \\ x, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases}\end{split}\]- Parameters
lambd (float) – The value for the HardShrink formulation. Default: 0.5
- Inputs:
input_x (Tensor) - The input of HardShrink with data type of float16 or float32.
- Outputs:
Tensor, the same shape and data type as the input.
- Supported Platforms:
Ascend
- Raises
Examples
>>> input_x = Tensor(np.array([[ 0.5, 1, 2.0],[0.0533,0.0776,-2.1233]]),mstype.float32) >>> hshrink = nn.HShrink() >>> output = hshrink(input_x) >>> print(output) [[ 0. 1. 2. ] [ 0. 0. -2.1233]]