使用PyNative模式调试
Ascend
GPU
模型开发
初级
中级
高级
概述
MindSpore支持两种运行模式,在调试或者运行方面做了不同的优化:
PyNative模式:也称动态图模式,将神经网络中的各个算子逐一下发执行,方便用户编写和调试神经网络模型。
Graph模式:也称静态图模式或者图模式,将神经网络模型编译成一整张图,然后下发执行。该模式利用图优化等技术提高运行性能,同时有助于规模部署和跨平台运行。
默认情况下,MindSpore处于PyNative模式,可以通过context.set_context(mode=context.GRAPH_MODE)
切换为Graph模式;同样地,MindSpore处于Graph模式时,可以通过 context.set_context(mode=context.PYNATIVE_MODE)
切换为PyNative模式。
PyNative模式下,支持执行单算子、普通函数和网络,以及单独求梯度的操作。下面将详细介绍使用方法和注意事项。
PyNative模式下为了提升性能,算子在device上使用了异步执行方式,因此在算子执行错误的时候,错误信息可能会在程序执行到最后才显示。
执行单算子
执行单个算子,并打印相关结果,如下例所示。
import numpy as np
import mindspore.nn as nn
from mindspore import context, Tensor
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
conv = nn.Conv2d(3, 4, 3, bias_init='zeros')
input_data = Tensor(np.ones([1, 3, 5, 5]).astype(np.float32))
output = conv(input_data)
print(output.asnumpy())
输出:
[[[[-0.02190447 -0.05208071 -0.05208071 -0.05208071 -0.06265172]
[-0.01529094 -0.05286242 -0.05286242 -0.05286242 -0.04228776]
[-0.01529094 -0.05286242 -0.05286242 -0.05286242 -0.04228776]
[-0.01529094 -0.05286242 -0.05286242 -0.05286242 -0.04228776]
[-0.01430791 -0.04892948 -0.04892948 -0.04892948 -0.01096004]]
[[ 0.00802889 -0.00229866 -0.00229866 -0.00229866 -0.00471579]
[ 0.01172971 0.02172665 0.02172665 0.02172665 0.03261888]
[ 0.01172971 0.02172665 0.02172665 0.02172665 0.03261888]
[ 0.01172971 0.02172665 0.02172665 0.02172665 0.03261888]
[ 0.01784375 0.01185635 0.01185635 0.01185635 0.01839031]]
[[ 0.04841832 0.03321705 0.03321705 0.03321705 0.0342317 ]
[ 0.0651359 0.04310361 0.04310361 0.04310361 0.03355784]
[ 0.0651359 0.04310361 0.04310361 0.04310361 0.03355784]
[ 0.0651359 0.04310361 0.04310361 0.04310361 0.03355784]
[ 0.04680437 0.03465693 0.03465693 0.03465693 0.00171057]]
[[-0.01783456 -0.00459451 -0.00459451 -0.00459451 0.02316688]
[ 0.01295831 0.00879035 0.00879035 0.00879035 0.01178642]
[ 0.01295831 0.00879035 0.00879035 0.00879035 0.01178642]
[ 0.01295831 0.00879035 0.00879035 0.00879035 0.01178642]
[ 0.05016355 0.03958241 0.03958241 0.03958241 0.03443141]]]]
执行普通函数
将若干算子组合成一个函数,然后直接通过函数调用的方式执行这些算子,并打印相关结果,如下例所示。
示例代码
import numpy as np
from mindspore import context, Tensor
from mindspore.ops import functional as F
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
def tensor_add_func(x, y):
z = F.tensor_add(x, y)
z = F.tensor_add(z, x)
return z
x = Tensor(np.ones([3, 3], dtype=np.float32))
y = Tensor(np.ones([3, 3], dtype=np.float32))
output = tensor_add_func(x, y)
print(output.asnumpy())
输出
[[3. 3. 3.]
[3. 3. 3.]
[3. 3. 3.]]
PyNative不支持并行执行和summary功能,图模式的并行和summary相关算子不能使用。
提升PyNative性能
为了提高PyNative模式下的前向计算任务执行速度,MindSpore提供了Staging功能,该功能可以在PyNative模式下将Python函数或者Python类的方法编译成计算图,通过图优化等技术提高运行速度,如下例所示。
import numpy as np
import mindspore.nn as nn
from mindspore import context, Tensor
import mindspore.ops.operations as P
from mindspore.common.api import ms_function
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
class TensorAddNet(nn.Cell):
def __init__(self):
super(TensorAddNet, self).__init__()
self.add = P.TensorAdd()
@ms_function
def construct(self, x, y):
res = self.add(x, y)
return res
x = Tensor(np.ones([4, 4]).astype(np.float32))
y = Tensor(np.ones([4, 4]).astype(np.float32))
net = TensorAddNet()
z = net(x, y) # Staging mode
tensor_add = P.TensorAdd()
res = tensor_add(x, z) # PyNative mode
print(res.asnumpy())
输出
[[3. 3. 3. 3.]
[3. 3. 3. 3.]
[3. 3. 3. 3.]
[3. 3. 3. 3.]]
上述示例代码中,在TensorAddNet
类的construct
之前加装了ms_function
装饰器,该装饰器会将construct
方法编译成计算图,在给定输入之后,以图的形式下发执行,而上一示例代码中的tensor_add
会直接以普通的PyNative的方式执行。
需要说明的是,加装了ms_function
装饰器的函数中,如果包含不需要进行参数训练的算子(如pooling
、tensor_add
等算子),则这些算子可以在被装饰的函数中直接调用,如下例所示。
示例代码
import numpy as np
import mindspore.nn as nn
from mindspore import context, Tensor
import mindspore.ops.operations as P
from mindspore.common.api import ms_function
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
tensor_add = P.TensorAdd()
@ms_function
def tensor_add_fn(x, y):
res = tensor_add(x, y)
return res
x = Tensor(np.ones([4, 4]).astype(np.float32))
y = Tensor(np.ones([4, 4]).astype(np.float32))
z = tensor_add_fn(x, y)
print(z.asnumpy())
输出
[[2. 2. 2. 2.]
[2. 2. 2. 2.]
[2. 2. 2. 2.]
[2. 2. 2. 2.]]
如果被装饰的函数中包含了需要进行参数训练的算子(如Convolution
、BatchNorm
等算子),则这些算子必须在被装饰等函数之外完成实例化操作,如下例所示。
示例代码
import numpy as np
import mindspore.nn as nn
from mindspore import context, Tensor
from mindspore.common.api import ms_function
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
conv_obj = nn.Conv2d(in_channels=3, out_channels=4, kernel_size=3, stride=2, padding=0)
conv_obj.init_parameters_data()
@ms_function
def conv_fn(x):
res = conv_obj(x)
return res
input_data = np.random.randn(2, 3, 6, 6).astype(np.float32)
z = conv_fn(Tensor(input_data))
print(z.asnumpy())
输出
[[[[ 0.10377571 -0.0182163 -0.05221086]
[ 0.1428334 -0.01216263 0.03171652]
[-0.00673915 -0.01216291 0.02872104]]
[[ 0.02906547 -0.02333629 -0.0358406 ]
[ 0.03805163 -0.00589525 0.04790922]
[-0.01307234 -0.00916951 0.02396654]]
[[ 0.01477884 -0.06549098 -0.01571796]
[ 0.00526886 -0.09617482 0.04676902]
[-0.02132788 -0.04203424 0.04523344]]
[[ 0.04590619 -0.00251453 -0.00782715]
[ 0.06099087 -0.03445276 0.00022781]
[ 0.0563223 -0.04832596 -0.00948266]]]
[[[ 0.08444098 -0.05898955 -0.039262 ]
[ 0.08322686 -0.0074796 0.0411371 ]
[-0.02319113 0.02128408 -0.01493311]]
[[ 0.02473745 -0.02558945 -0.0337843 ]
[-0.03617039 -0.05027632 -0.04603915]
[ 0.03672804 0.00507637 -0.08433761]]
[[ 0.09628943 0.01895323 -0.02196114]
[ 0.04779419 -0.0871575 0.0055248 ]
[-0.04382382 -0.00511185 -0.01168541]]
[[ 0.0534859 0.02526264 0.04755395]
[-0.03438103 -0.05877855 0.06530266]
[ 0.0377498 -0.06117418 0.00546303]]]]
调试网络训练模型
PyNative模式下,还可以支持单独求梯度的操作。如下例所示,可通过GradOperation
求该函数或者网络所有的输入梯度。需要注意,输入类型仅支持Tensor。
示例代码
from mindspore.ops import composite as C
import mindspore.context as context
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
def mul(x, y):
return x * y
def mainf(x, y):
return C.GradOperation(get_all=True)(mul)(x, y)
print(mainf(Tensor(1, mstype.int32), Tensor(2, mstype.int32)))
输出
(2, 1)
在进行网络训练时,求得梯度然后调用优化器对参数进行优化(暂不支持在反向计算梯度的过程中设置断点),然后再利用前向计算loss,从而实现在PyNative模式下进行网络训练。
完整LeNet示例代码
import numpy as np
import mindspore.nn as nn
import mindspore.ops.operations as P
from mindspore.ops import composite as C
from mindspore.common import dtype as mstype
from mindspore import context, Tensor, ParameterTuple
from mindspore.common.initializer import TruncatedNormal
from mindspore.nn import Dense, WithLossCell, SoftmaxCrossEntropyWithLogits, Momentum
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer"""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell):
"""
Lenet network
Args:
num_class (int): Num classes. Default: 10.
Returns:
Tensor, output tensor
Examples:
>>> LeNet(num_class=10)
"""
def __init__(self, num_class=10):
super(LeNet5, self).__init__()
self.num_class = num_class
self.batch_size = 32
self.conv1 = conv(1, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.reshape = P.Reshape()
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.reshape(x, (self.batch_size, -1))
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
class GradWrap(nn.Cell):
""" GradWrap definition """
def __init__(self, network):
super(GradWrap, self).__init__(auto_prefix=False)
self.network = network
self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters()))
def construct(self, x, label):
weights = self.weights
return C.GradOperation(get_by_list=True)(self.network, weights)(x, label)
net = LeNet5()
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9)
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
net_with_criterion = WithLossCell(net, criterion)
train_network = GradWrap(net_with_criterion)
train_network.set_train()
input_data = Tensor(np.ones([net.batch_size, 1, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([net.batch_size]).astype(np.int32))
output = net(Tensor(input_data))
loss_output = criterion(output, label)
grads = train_network(input_data, label)
success = optimizer(grads)
loss = loss_output.asnumpy()
print(loss)
输出
2.3050091
上述执行方式中,可以在construct
函数任意需要的地方设置断点,获取网络执行的中间结果,通过pdb的方式对网络进行调试。