文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindsponge.metrics.BalancedMSE

class mindsponge.metrics.BalancedMSE(first_break, last_break, num_bins, beta=0.99, reducer_flag=False)[源代码]

计算预测值和真实值之间的均衡平方误差,适用于回归任务中标签不平衡的场景。详细实现过程参考: Ren, Jiawei, et al. ‘Balanced MSE for Imbalanced Visual Regression’

L=logN(y;ypred ,σnoise 2I)+logi=1Nptrain (y(i))N(y(i);ypred ,σnoise 2I)
参数:
  • first_break (float) - bin划分的起始位置。

  • last_break (float) - bin划分的结束位置。

  • num_bins (int) - 划分bin的数目。

  • beta (float) - 滑动平均的系数。默认值:0.99。

  • reducer_flag (bool) - 是否对多卡的标签值做聚合。默认值:False。

输入:
  • prediction (Tensor) - 模型预测值,shape为 (batch_size,ndim)

  • target (Tensor) - 标签值,shape为 (batch_size,ndim)

输出:

Tensor。shape为 (batch_size,ndim)

支持平台:

Ascend GPU

样例:

>>> import numpy as np
>>> from mindsponge.metrics import BalancedMSE
>>> from mindspore import Tensor
>>> net = BalancedMSE(0, 1, 20)
>>> prediction = Tensor(np.random.randn(32, 10).astype(np.float32))
>>> target = Tensor(np.random.randn(32, 10).astype(np.float32))
>>> out = net(prediction, target)
>>> print(out.shape)
(32, 10)