mindsponge.common.quat_affine
- mindsponge.common.quat_affine(quaternion, translation, rotation=None, normalize=True, unstack_inputs=False, use_numpy=False)[source]
Create quat affine representations based on rots and trans.
- Parameters
quaternion (tensor) – Shape is \((N_{res}, 4)\).
translation (tensor) – Shape is \((N_{res}, 3)\).
rotation (tensor) – Rots, shape is \((N_{res}, 9)\). Default:
None
.normalize (bool) – Whether to use normalization. Default:
True
.unstack_inputs (bool) – Whether input is vector(True) of Tensor(False). Default:
False
.use_numpy (bool) – Whether to use numpy. Default:
False
.
- Returns
result after quat affine.
quaternion, tensor, shape is \((N_{res}, 4)\) .
rotation, tuple, \((xx, xy, xz, yx, yy, yz, zx, zy, zz)\), shape of every element is \((N_{res},)\) .
translation, tensor, shape is \((N_{res}, 3)\) .
- Supported Platforms:
Ascend
GPU
Examples
>>> import numpy as np >>> import mindspore as ms >>> from mindspore import Tensor >>> from mindsponge.common.geometry import quat_affine >>> input_0 = Tensor(np.ones((256, 4)), ms.float32) >>> input_1 = Tensor(np.ones((256, 3)), ms.float32) >>> qua, rot, trans = quat_affine(input_0, input_1) >>> print(qua.shape, len(rot), rot[0].shape, trans.shape) (256, 4), 9, (256,), (256, 3)