mindsponge.common.apply_to_point
- mindsponge.common.apply_to_point(rotation, translation, point, extra_dims=0)[source]
Rotate and translate the input coordinates.
\[\begin{split}\begin{split} &rot_point = rotation \cdot point \\ &result = rot_point + translation \\ \end{split}\end{split}\]For specific multiplication and addition procedures, refer to the rots_mul_vecs and vecs_add apis.
- Parameters
rotation (Tuple) – The rotation matrix \((xx, xy, xz, yx, yy, yz, zx, zy, zz)\), and \(xx, xy\) are Tensor and have the same shape.
translation (Tuple) – Translation vector \([(x, y, z)]\), where \(x, y, z\) are Tensor and have the same shape.
point (Tensor) – Initial coordinate values \([(x, y, z)]\), where \(x, y, z\) are Tensor and have the same shape.
extra_dims (int) – Control whether to expand dims. default:0.
- Returns
Tuple, the result of the coordinate transformation. Length is 3.
- Supported Platforms:
Ascend
GPU
Examples
>>> import numpy as np >>> from mindsponge.common.geometry import apply_to_point >>> from mindspore.common import Tensor >>> from mindspore import dtype as mstype >>> np.random.seed(1) >>> rotation = [] >>> for i in range(9): ... rotation.append(Tensor(np.random.rand(4),dtype=mstype.float32)) >>> translation = [] >>> for i in range(3): ... translation.append(Tensor(np.random.rand(4),dtype=mstype.float32)) >>> point = [] >>> for i in range(3): ... point.append(Tensor(np.random.rand(4),dtype=mstype.float32)) >>> out = apply_to_point(rotation, translation, point) >>> print(out) (Tensor(shape=[4], dtype=Float32, value= [ 1.02389336e+00, 1.12493467e+00, 2.54357845e-01, 1.25249946e+00]), Tensor(shape=[4], dtype=Float32, value= [ 9.84841168e-01, 5.20081401e-01, 6.43978953e-01, 6.15328550e-01]), Tensor(shape=[4], dtype=Float32, value= [ 8.62860143e-01, 9.11733627e-01, 1.09284782e+00, 1.44202101e+00]))