mindquantum.algorithm.compiler.qs_decompose

查看源文件
mindquantum.algorithm.compiler.qs_decompose(gate: QuantumGate, with_barrier: bool = False)[源代码]

任意维幺正量子门的矩阵的香农分解。

该分解方法中的CNOT门数量为:

\[O(4^n)\]

了解更多详细信息,请参考 Synthesis of Quantum Logic Circuits

参数:
  • gate (QuantumGate) - 量子门实例。

  • with_barrier (bool) - 是否在分解时加入 BarrierGate。默认值: False

返回:

Circuit,由单比特门和CNOT门构成的量子线路。

样例:

>>> import mindquantum as mq
>>> from mindquantum.algorithm.compiler.decompose import qs_decompose
>>> from scipy.stats import unitary_group
>>> tqs = [1,2,3,6] # arbitrary qubit index order is OK
>>> n = len(tqs) # qubit number
>>> u = unitary_group.rvs(2 ** n, random_state=123)
>>> g = mq.UnivMathGate('U', u).on(tqs)
>>> circ = qs_decompose(g)
>>> num_cnot =  len([g for g in circ if isinstance(g, mq.XGate) and len(g.ctrl_qubits)==1])
>>> print('total gate number: {}, CNOT number: {}'.format(len(circ), num_cnot))
total gate number: 412, CNOT number: 180